DEVELOPMENT OF MULTI-BUNCH LASER SYSTEM FOR PHOTOCATHODE RF GUN IN KU-FEL

Kyohei Shimahashi ^{#,A)}, Ryunosuke Kuroda^{B)}, Heishun Zen^{A)}, Toshiteru Kii ^{A)}, Kensuke Okumura ^{A)}, Marie Shibata ^{A)}, Hidekazu Imon ^{A)}, Torgasin Konstantin ^{A)}, Hani Negm ^{A)}, Omer Mohamed ^{A)}, Kyohei Yoshida ^{A)}, Yong-Woon Choi ^{A)}, Ryota Kinjo ^{A)}, Kai Masuda ^{A)}, Hideaki Ohgaki ^{A)}

> A) Institute of Advanced Energy, Kyoto University Gokasho, Uji-city, Kyoto, 611-0011
> B) National Institute of Advanced Industrial Science and Technology 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568

Abstract

We have been developing mid-infrared FEL (MIR-FEL) system, KU-FEL (Kyoto University-FEL), which utilizes a 4.5 cell S-band thermionic RF gun, in Institute of Advanced Energy, Kyoto University. We plan to introduce a BNL-type 1.6-cell photocathode RF gun to generate higher peak power MIR-FEL. The purpose of this work is to develop the multi-bunch laser system which excites the photocathode in the RF gun. The target values of the system are bunch number of 300 and micro-pulse energy of 1 μ J in the wavelength of 266 nm. The laser system consists of a mode-locked Nd:YVO₄ laser as the oscillator, an acousto-optic modulator, a laser beam pointing stabilization system, a diode pumped Nd:YAG amplifier and 4th harmonic generation crystals.

KU-FEL におけるフォトカソード RF 電子銃入射用の マルチバンチレーザの開発

1. はじめに

京都大学エネルギー理工学研究所では、エネル ギー科学への応用を目指して、中赤外自由電子レー ザ(KU-FEL)の高性能化を目的とした研究開発を 行っている。現在、S-band4.5 空洞熱陰極高周波電 子銃、進行波型加速管を用いて、40 MeV までの電 子ビームエネルギーを得ることができ、5~14.5 μm の波長域で発振することに成功している^[1]。

我々はさらに安定かつ高出力な FEL パワーを得 るために、BNL型 1.6 空洞フォトカソード RF 電子 銃の導入を予定しており、計算結果では現施設より 高性能な FEL が期待できる^[2]。電子銃の製作がすで に完了し^[3]、現在、入射用のマルチバンチレーザの システム開発を行っている。開発にあたり、ビーム アライメントシステムを導入し、赤外光でのマルチ パスアンプシステムの構築を行ったので報告する。

2. マルチバンチレーザシステム

2.1 目標値

空間電荷制限領域に達していない場合、フォトカ ソードから引き出される電子の電荷量 Q は式(1)で 与えられる。

$$Q = \frac{\eta e W \lambda_L}{hc} \tag{1}$$

ここで、ηは陰極物質の量子効率、e は素電荷、W

[#] kyohei@iae.kyoto-u.ac.jp

はレーザのパルスエネルギー、AL はレーザの波長、 h はプランク定数である。量子効率や寿命を考慮す ると現在最も有力な光陰極物質は Cs₂Te である。 Cs₂Teのバンドギャップエネルギーは 3.2 eV であり、 光電子を得るためには、紫外光による励起を必要と する。本研究では、上記の Cs,Te の使用を想定し、 その量子効率を文献より 1.5%[4,5]と仮定する。発生 させる電荷量を 1 nC としたとき、式(1)から導かれ る紫外光レーザのパルスエネルギーは 0.31 µJ /ミク ロパルス である。これより、光学損失などを考慮 に入れて、カソードに入射する紫外光レーザのパル スエネルギーの目標値を 1 uJ /ミクロパルスとし、 マクロパルス内のミクロパルス数 300 以上、マクロ パルスの繰返し周波数1~10 Hzを目指す。紫外光 レーザの発生には赤外光の Nd:YVO4 レーザ (1064 nm)を使用するので、4倍高調波(266 nm)を発生 させる必要があり、2 倍高調波を発生させる非線形 光学結晶を 2 個用いることを予定している。BBO 結晶での 1064 nm から 266 nm への変換効率は 10% 程度
⁶⁷と仮定すると、波長変換前の赤外光での目標 値は10 山/ミクロパルスとし、マルチパスアンプシ ステムの構築を行う。

2.2 システム構成

レーザの発振器として、Time-Bandwidth 社製の Nd:YVO4 モードロック同期レーザ(GE-100-VAN) を用いている。仕様は発振波長 1064 nm、繰返し周

波数 89.25 MHz(時間間隔 11.2 ns)、平均出力 600 mW、パルス幅 7.5 ps (FWHM)である。繰返し周波 数は KU-FEL の加速周波数である高周波信号(2856 MHz)の 32 分周波を参照信号とし、モードロック レーザの共振器長を制御して、加速高周波と光陰極 励起レーザの時間同期をとる設計となっている。 レーザ発振器には AOM (acousto-optic modulator) 光 変調素子が内蔵しており、任意の振幅変調を持った マクロパルスの切り出しが可能である。しかし、 AOM 光変調素子のドリフトにより、ビーム位置の 揺らぎがあることがわかった。そこで、発振器直後 にビームアライメントシステムを導入し、位置、角 度とともに安定化を図った。次に、LD(laser diode) 励起アンプに 4 パスさせるシステムを構築 した。アンプのモジュールは CEO 社製 REA5006-2P1 を使用し、 Ø5 mm×12.6 cm の Nd:YAG ロッド を含んでいる。以上におけるシステムの全体構成を 図1に示す。また、図1(a)はレーザ発振器からビー ムアライメントシステムまで、図1(b)はアンプシス テムの概略図を示している。

(a)

図1(a),(b):マルチバンチレーザシステムの概略図.

3. ビームアライメントシステムの導入

レーザの発振器から波長変換部までの距離が約 8 m と距離が長いため、少しでもビームに角度が ついていると大きな位置のずれが生じる。特に、 波長変換結晶における入射位置がずれると、変換 効率にも影響することが想定される。そこで、本 システムの構成にあたり、発振器の直後にビーム アライメントシステムの導入を行った。装置は TEM 社製の Aligna4D を用いている。Aligna4D は 二つの自動ミラーマウント、検出部で構成されて いる。検出部の中には、二つの位置検知型検出器、 ビームスプリッター、平凸レンズが入っている。 これより、検出器の直前に入射されるビームの位 置、角度を知ることができ、それぞれが中心の位 置に来るように自動ミラーマウントのレギュレー タ(モータ、ピエゾ素子)により調整を行い、 ビームのアライメントを図る。

3.1 ビームの安定度測定

ビームアライメントシステムの位置検知型検出器 を用いて、レギュレータ ON、OFF 時のビーム位置、 角度の安定度を測定した。初めに、AOM 光変調素 子の急激な温度上昇による不安定さをできるだけ無 くすために、1時間連続発振を行った。連続発振を 保ちながら、レギュレータを OFF、ON、OFF とい う動作を約 20 分の間隔で行い、ビームの水平、垂 直方向の角度、位置を測定した。なお、マクロパル ス内のミクロパルス数は 300、マクロパルスの繰返 し周波数は10 Hz、マクロパルスエネルギーは6 nJ で行っている。測定結果を図 2,3 に示す。それぞ れの結果より、レギュレータを ON した時の 20~ 40 分間において、ビーム位置、角度の変動が小さ く抑えられていることが確認できる。表1に、各測 定における標準偏差を示す。角度については水平方 向で18%、垂直方向で40%、位置については水平方 向で 28%、垂直方向で 60% まで変動値を抑えるこ とができた。また、長期のドリフトが大きく低減で きていることも見てとれる。 以上の結果から、波 長変換部(位置検知型検出器から約7m)での位置 変動は水平方向で38 μm、垂直方向で98 μmの範囲 内に収めることができたといえる。

図 2:レギュレータ ON、OFF 時でのビーム角度 変動の比較(a)水平方向(b)垂直方向.

図3:レギュレータON、OFF 時でのビーム角度 変動の比較(c)水平方向(d)垂直方向.

恚	1	•	変動値の標準偏差比較	
11	1	•	发到但*/标车栅左归权.	

	OFF	ON
角度(水平方)	句) 30 µrad	5.4 µrad
(垂直方	前) 35 µrad	14 µrad
位置(水平方	向) 2.0 μm	0.56 µm
(垂直方	句) 6.7 μm	0.40 µm

マルチパスアンプシステムの構築 4.

図1 (b)に示した通り、LD 励起アンプにレーザ光 を4パスさせるシステムを構築した。アンプは約 250 µs 程度の時間幅で結晶を励起し、230 µs の時間 タイミングで Seed パルス列を入射する。なお、マ クロパルスの繰返し周波数は 10 Hz、マクロパルス 内のミクロパルス数は 300、AOM 光変調素子に入 力する変調信号は振幅4Vの矩形波である。以上の 条件下のもとで、アンプに 4 パス通過させた位置で のレーザ光の信号を PD (photo diode) で測定した。 アンプの電流値を増加させることで PD の信号強度 が増大していくが、電流値 60 A を超えた時点でア ンプ自身が発する光による自励発振が起こっている ことがわかった。オシロスコープで観測した PD 信 号の波形を図4に示す。

ここで、図1(b)に示した通り、アイリスを設置し て発散角の大きい自励光を遮ることにより、アンプ 電流値 80 A までの自励発振を抑えることができた。 このときの PD 信号の波形を図 5 に示す。また、ア ンプ電流値を変化させたときのパルスエネルギーを

図 6 に示す。今回測定に用いたエネルギーメータ (Ophir Optronics 社製 PE10BB) ではアンプ電流値 63 A までしか測定することができなかった。図 6 よりアンプ電流値を変化させることで、指数関数的 にパルスエネルギーが増大していることが確認でき る。しかし、パルスエネルギーの最大値は 360 μJ で あるので、マクロパルス内のミクロパルス数 300 よ り、ミクロパルスあたりのパルスエネルギーは 1.2 μ と 2.1 節に示した目標値に達することができな かった。原因としては、アイリスによってレーザ光 が遮られることにより、十分な入力光パワーが得ら れなかったと考えられる。以上より、チョッパーな どを用いて、自励発振を抑えることが必要であると 考えられる。

図 5: アンプ電流値 80 A での PD 信号の波形.

図6:アンプ電流値とパルスエネルギーの関係.

まとめと今後の予定 5.

フォトカソード RF 電子銃の導入に向け、入射用 マルチバンチレーザの開発を行っている。開発にあ たり、レーザ発振器直後にビームアライメントシス

テムを導入することで、最大 60%の AOM 光変調素 子のドリフト変動を抑えることができた。また、マ ルチパスアンプシステムを構築し、1.2 µJ / ミクロ パルスまで増幅させることができた。今後は目標値 の達成に向けて、自励発振が起こらないシステムを 構築しパルス強度を増大させるとともに、紫外光へ の波長変換を行う予定である。

謝辞

本研究は「京都大学エネルギー理工学研究所ゼロ エミッションエネルギー研究拠点 共同利用・共同 研究プログラム A-25」の援助を受けた。

参考文献

- [1] H.Zen, et al., "Present status of Kyoto University MIR-FEL facility", THPS006 in these proceedings.
- [2] H.Ohgaki, et al., "Numerical evaluation of oscillator FEL with multi-bunch photo-cathode RF-gun in Kyoto University", Proceedings of FEL 2007, 390-393, (2007).
- [3] 紀井 俊輝 他, "京都大学・S バンド光陰極高周波電子 銃の製作", 第5回高周波電子銃研究会, (2007).
- [4] N.Terunuma, et al., "Improvement of an S-band RF gun with a Cs_2Te photocathode for the KEK-ATF", Nucl. Instrum. Method A **613**, 1-8 (2009).
- [5] 山崎良雄, "小型高輝度硬 X 線源開発 (1) マルチ バンチフォトカソード RF ガン - ", 第 27 回リニアッ ク技術研究会, 7P-51, (2002).
- [6] M.Yoshida, et al., "Laser development of high charge and low emittance DAW RF gun for SuperKEKB", Proceedings of the 8th Annual Meeting of Particle Accelerator Society of Japan, (2011).