Present status of Laser Undulator Compact X-ray source (LUCX)

Masafumi Fukuda^{1,A)}, Sakae Araki^{A)}, Yasuo Higashi^{A)}, Koichiro Hirano^{2,A)}, Yosuke Honda^{A)}, Toshiya Muto^{3,A)}

Kazuyuki Sakaue^{B)}, Noboru Sasao^{C)}, Liu Shengguang^{A)}, Mikio Takano^{D)}, Takashi Taniguchi^{A)},

Nobuhiro Terunuma^{A)}, Junji Urakawa^{A)}, Yoshio Yamazaki^{4,A)}, Hirokazu Yokoyama^{C)}

^{A)} High Energy Accelerator Research Organization

1-1 Oho, Tsukuba-shi, Ibaraki, 305-0801, Japan

^{B)} Advanced Research Institute for Science and Engineering, Waseda University

17 Kikui-cho, Shinjuku-ku, Tokyo, 162-0044, Japan

^{C)} Facility of Science, Kyoto University

Oiwake-Cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan

^{D)} Saube Co., Ltd.

3-17-3 Hanabatake, Tsukuba-shi, Ibaraki, 300-3261, Japan

Abstract

We have developed a high flux X-ray generator via inverse Compton scattering of an e⁻ beam and a high power pulsed laser beam with a pulsed-laser stacking cavity. The merit of this method is that a compact and inexpensive X-ray generator can be constructed because this generator can obtain the X-ray of the same energy with e⁻ beam of a lower energy in comparison with a synchrotron radiation facility using a GeV order storage ring. In order to demonstrate the X-ray generation using a pulsed-laser stacking cavity, we have constructed the linac to produce the multi-bunch e⁻ beam with the energy of 43MeV and the charge of 200nC/100bunches. This paper reports the present status of this linac.

KEK小型電子加速器(LUCX)の現状報告

1. はじめに

現在、X線は医療、生命科学、材料科学など広い 分野で利用されている。例えば、動的血管造影では 患者の体内にヨウ素を注入し、ヨウ素のKエッジ

(33.169keV)前後のエネルギーの硬X線を照射し、 それぞれの像をとる。Kエッジの前後で散乱断面積 が大きく変わるので、その前後のエネルギーの透過 X線のコントラストをとることにより、血管の鮮明 な像を得ることができる。また、タンパク質の構造 解析などにも利用される。これらの利用には安定し た高輝度X線源が必要である。このためのX線源と しては、GeVオーダーの電子蓄積リングでのアン ジュレータを利用したもの(SPring8など)がある。こ れは、高輝度で、高い安定性をもつが、一般的に装 置が巨大で高価であり、使用できる場所は限られて いる。もっと小型で安価な高輝度X線源が実現し、 病院、大学、企業なども導入できるようになれば、 放射線医療、研究、産業の発展に大きく貢献するこ とができる。

そこで、我々はコンプトン散乱を利用した小型高 輝度X線源の開発研究を高エネルギー加速器研究機 構(KEK)に設けた小型加速器で行っている。これは、 医療用小型高輝度X線源の開発として放射線医学総 合研究所と共同で製作したものである。最終的な装 置構成は、周長約13mの小型の蓄積リング中にレー ザー蓄積装置を設置したものになる[1]。この装置で は赤外(1064nm)のレーザーパルスと43MeVの電子 ビームとのコンプトン散乱により33keVの硬X線を 生成する。コンプトン散乱を利用することにより、 より低いエネルギーの電子ビームで硬X線を作るこ とができる。このため蓄積リングの小型化が可能に なり装置がコンパクトとなるため、比較的安価に高 輝度X線源を製作することが可能になって来る。た だし、コンプトン散乱の断面積は小さいのでX線数 を増やすために、レーザー、電子ビームとも密度を 上げて衝突させる必要がある。レーザーに関しては、 ピークパワーの高いパルスレーザーを作り出すため に、2枚の凹面ミラーからなる光共振器であるレー ザー蓄積装置を用いる。共振器長をレーザーのパル ス間隔の半分にすることで共振器内にピークパワー の高いパルスを蓄積でき、また凹面ミラーを使うこ とで光共振器中心で横方向のサイズを100 µ m以下 に絞ることもできる。また、電子ビームに関しても、 高強度であることと共に、衝突点でできるだけ小さ くビームサイズを絞るため、質のよい(エミッタン スの小さい)ことが重要である。

そこで、我々は高品質で大強度のマルチバンチ電

¹ E-mail: mfukuda@post.kek.jp

² Present address: Japan Atomic Energy Agency

³ Present address: Laboratory of Nuclear Science, Tohoku University

⁴ Present address: Japan Atomic Energy Agency

図1 小型電子加速器ビームライン

子ビーム源の開発をKEKに設けた小型電子加速器で 行っている。昨年11月まで第1段階として電子源の 開発を行った。電子源としてフォトカソードRF電 子銃を採用した。これは、高品質なビームを得られ、 さらにレーザーのバンチ構造をそのまま引き継ぐた め、バンチャーなどの装置が不要となり、ビームラ インを小型化でき、マルチバンチビームも容易に生 成できるためである。カソードとしてモリブデン表 面に金属カソードに比べて量子効率の高いCs-Teを 蒸着したものを使用した。レーザーの入射パワーと 電子ビームの電荷量から計算するとカソードの量子 効率は0.3%以上を保持していた。このRF電子銃を 用いた大強度マルチバンチ電子ビームの生成の実験 では、250nC/train、100bunches/trainのマルチバンチ 電子ビームの生成に成功した[2]。現在は第2段階と して、ビームエネルギーを5MeVから43MeVまで上 げ、レーザー蓄積装置を用いた逆コンプトン散乱に よるX線生成実験を行う予定である[3]。このため加 速管とレーザー蓄積装置を設置する部分を追加する ビームラインの改造を2005年11月から行った。建設 は2006年3月末に終了し、エージングを開始した。 また、7月中旬からビーム運転を開始したところで ある。本稿では、この小型電子加速器について報告 する。

2. 小型電子加速器

2.1 ビームライン

図1は小型電子加速器のビームラインである。電子源には引き続きフォトカソードRF電子銃を採用している。レーザーパルス(266nm)はシケインの部分からカソードへ垂直に入射する。RF電子銃で生成した4MeVの電子ビームはS-band 3m加速管で

表1 筒	電子ビ	ームのノ	ペラ	メータ
------	-----	------	----	-----

Energy	43MeV	
Intensity	2nC/bunch	
Number of Bunches	100 bunches/train	
Bunch spacing	2.8ns	
Bunch length	10ps	
Repetition Rate	12.5 train/s	

43MeVまで加速する。その下流にはX線生成を行う 部分があり、衝突点にはレーザー蓄積装置を設置す る。加速管直前と衝突点前後には四極電磁石を設置 した。加速管直前のものは加速管内でのビームサイ ズを小さく保つためと下流の四極電磁石でのビーム サイズを大きくして衝突点でのビームサイズをなる べく小さく絞るためにある。衝突点上流のものはそ こでビームサイズを収束するため、その下流のもの は収束したあと広がるビームを抑えビームダンプま で輸送するためである。最後は偏向電磁石でビーム を垂直下方に設置したビームダンプに捨てる。ビー ムダンプ直前には電子ビームのエネルギーやチャー ジ量を測定するためにプロファイルモニタとICTを 設置した。また、各所に電子ビームの位置やサイズ を測定するためのBeam Position Monitor やプロファ イルモニタを配置している。X線は偏向電磁石の後 方より厚さ0.3mmのBe窓を通して大気中に取り出す。 ビームラインの全長は約11mである。電子ビームの パラメータは表1のようになっている。また、この ビームラインのオプティクスはSAD (Strategic Accelerator Design)[4]を使って設計した。衝突点で の電子ビームサイズは $\sigma_x=64 \mu m$, $\sigma_y=32 \mu m$ と計算 されている。またX線検出に際してビームロスによ るバックグラウンドを抑えるため、全体を通して ビームサイズが3mm 以下になるようにした。

2.2 RF system

図2はRF systemである。Klystronは東芝製E3718 を使用しており、この1台でRFgunと加速管に RF(2856MHz)を供給している。Klystronからの

47MWの出力電力は、進行波型RFパルス圧縮器 RRCS(Resonant-Ring type Compression System)[5]で ピーク電力を3.25倍に増幅される。その後、 RFgunと加速管の両方へ分配し、それぞれ最大 ピーク電力53MW、46MWを供給する。大電流の マルチバンチビームを作るときに問題となるのは, ビームローディングにより、バンチ列の前方と後 方でエネルギー差が出来てしまうことである。 200nC/train, 100bunches/trainのマルチバンチビー ムが高周波が定常状態になったときに、加速管に 入射すると、18MeVのエネルギー差が生じる。電 子ビームを100 µm以下に絞りレーザーと衝突さ せるにはエネルギー差を1%以下に抑える必要が ある。これを補正するため、高周波が空洞内に満 たされつつある過渡期に入射することで、後ろの バンチほど、入射時の高周波による電場が高い状 態にし、ビームローディングの影響を相殺する。 ただし、過渡期に入射するとその分ビームエネル ギーが下がってしまう。それを補うためにRRCS を用いピーク電力を上げて必要なビームエネル ギーを得られるようにする。

図3は加速管出口でのビームエネルギーで、青線が100bunchesを入射した時のビームトレインのエネルギーである。パルス圧縮部の始めから0.2usのところにビームを入射すると補正できるのが分かる。このときエネルギー差は1%である。

2.3 Laser system

レーザーシステムは図4のようになっている。波 長1064nmの7W, 357MHz, Nd:YVO₄モードロックパ ルスレーザー(Time-Bandwidth Products GE-100-1064-VAN-XHP)をシードレーザーとし, 100バンチ (280ns)を切り出すためのポッケルセル(KD*P), 2台 のフラッシュランプ励起のNd:YAGアンプ,赤外光 を紫外光に変換する2つのBBO結晶(SHG,FHG)から なる。ポッケルセルで切り出された100バンチの レーザーパルス列はそれぞれのアンプを2回通過し, 約2000倍に増幅され,BBO結晶で紫外光へと変換さ れる。赤外→紫外の変換効率は約25%,パルスあた りのエネルギーが10 µ J/pulse の100バンチレーザー パルスを生成する。パワージッターはr.m.s.で約3% となっている。

図4 Laser system

3. 現在までの運転状況と今後

今年3月末にビームラインの建設が終了しRFエー ジングを開始した。現在は約400時間行いKlystron出 力電力23MW, RF電子銃、加速管へのピーク入力電 力約30MWで安定に運転できるようになっている。 RF電子銃には約10MW入っている。この出力で7月 中旬よりビーム運転を開始し、38MeV, 30nC, 100bunchesのビームをビームダンプまで輸送するこ とができた。そのときのICTで測定したビーム電流 の信号が図1の波形である。まだ、RFの入力電力が 設計値より低いので、ビームエネルギーを上げるた め、RFに対するビームの入射タイミングを後ろに ずらして運転している。エミッタンスなどのビーム パラメータの測定はこれからであり、そのための測 定系の確立を行っていく。今後、ビームローディン グを補正しつつ、43MeV, 100バンチ, 200nCの電子 ビームを生成するには、RF電力を設計値まで上げ る必要があり、ビーム運転と共にRFエージングも 継続し、目標のビーム生成を目指す。

参考文献

- J. Urakawa, et al., "Electron beam cooling by laser", Nucl. Instr. and Meth. A532, pp388-393 (2003).
- [2] K. Hirano, et al., "High-intensity multi-bunch beam generation by a photo-cathode RF gun", Nucl. Instr. and Meth. A560, pp233-239 (2006).
- [3] K. Sakaue, et al., "Laser Undulator Compact X-ray source (LUCX) using pulsed-laser stacking cavity", in this meeting.
- [4] SAD http://acc-physics.kek.jp/SAD/sad.html
- [5] S. Yamaguchi, et al., "High-Power Test of a Traveling-Wave-Type RF-Pulse Compressor", Proc. PAC1995, Dallas, USA (1995) pp1578-1580