PRESENT STATUS OF UVSOR-II FREE ELECTRON LASER

Masahito Hosaka^{1,A)}, Masahiro Katoh^{A)}, Akira Mochihashi^{A)}, Miho Shimada^{A)}, Jun-ichiro Yamazaki^{A)},

Yoshifumi Takashima^{B)}, Toru Hara^{A), C)} ^{A)} UVSOR facility Institute for Molecular Science

UVSOR facility institute for Molecular Science

38 Myodaiji-cho, Okazaki, Aichi 444-8585

^{B)} Graduate School of Engineering, Nagoya University,

Furo-cho, Chikusa, Nagoya, Aichi 464-8585

^{C)}RIKEN/SPring8

1-1-1 Kouto, Mikazuki, Hyogo 679-5148

Abstract

On the UVSOR storage ring, free electron laser (FEL) experiments have been made using a helical optical klystron. Thanks to a recent upgraduation of the storage ring (lower beam emittance and higher accelerating cavity voltage), an FEL gain has been enhanced much and we have succeeded in high power lasing in a deep UV region. The highest extracted CW power is 0.25 W at wavelength of 215 nm and 1.1 W at 230 nm. Because of its variable wavelength even in deep UV region, high power and good coherence, the UVSOR-II-FEL has been recognized as a useful tool by users inside and outside Institute for Molecular Science. Now UVSOR-II-FEL has four groups of user (solid state experiments, surface physics, irradiation on bio-molecule) and three different kinds of experiments have been carried out this financial year (until July 06').

UVSOR-II 自由電子レーザーの現状

1. はじめに

UVSORではこれまで蓄積リング型自由電子レー ザー(FEL)の開発が進められきた。円偏光オプ ティカルクライストロンの導入により当時の最短波 長である239 nmの発振に成功し(1997年)^[1]、可視 域ながら平均出力1.2 Wの大強度発振に成功してい る(2001年)^[2]。2003年からのUVSOR高度化により 蓄積リングの電子ビームの性能は向上し、特にビー ムエミッタンスはこれまでの約1/6になった^[3]。この ことはFELにとって有利であり、FEL増幅率の増加 によって紫外領域である波長255nmの領域で平均出 力0.2 Wを越える発振に成功している(2004年)。さら にUVSORは2005年にRF加速空洞の更新が行われ、 これまでの50 kVであった加速電圧を150 kVまで上 げることが可能になった^[4]。このことでさらにFEL の性能を向上させることができ、深紫外域(215nm および230 nm)近辺の領域の大強度発振の成功した。 最新のUVSOR-IIストレージリングおよびFELのパラ メータを表1にまとめてある。また深紫外域にFEL はユーザーの応用利用に用いられ、現在合計で4グ ループの実験が進めれている。本稿では深紫外での 発振実験およびユーザー実験の様子を報告する。

2. 波長域215 nmでの発振

深紫外域波長215nm近辺の発振実験の目的はFEL の利用実験のユーザーに必要な波長のFELを供給す 表1 UVSOR-II FELのパラメータ

アンジュレータ	(オプティカルクライストロン)	
偏光	直線、左右円偏光	
周期長	110 mm	
周期数	9 + 9	
K值	直線偏光 < 8.5 円偏光 < 4.6	
電子ビーム		
繰り返し	11.26 MHz (2-bunch)	
周波数		
ビームエネル	600 MeV	750 MeV
ギー		
エミッタンス	18 nmrad	24 nmrad
自然バンチ長	64 psec	88 psec
(Vc=150 kV)		

ることである。この利用実験は生体分子への照射実 験であり、対象となるサンプルは215nm近辺の吸収 が特に強いために、このFELの波長が選ばれた。こ れまでのUVSORでの紫外域でのFELの実験では光共 振器にHfO₂/SiO₂多層膜ミラーが用いられてきたが、 HfO₂/SiO₂のバンドギャップは5.6 eV (220 nm)である ために、深紫外域(<230 nm)では光の吸収が大きく 用いることができない。そこでバンドギャップが約 7 eV (180 nm)であるAl₂O₃/SiO₂多層膜がミラーとし

¹ E-mail: hosaka@ims.ac.jp

図2 波長215 nmでの電子ビームエネル ギー600 MeVおよび750 MeVでのFELの パワー

て用いられた。この多層膜ミラーは多層膜の層数を 往復反射率が約99%になるように選んだが、放射光 を用いて測定された反射率は約98%であった。これ は反射率測定中に放射光によって劣化されたためで あると考えられる。しかしながら、その後反射率の 劣化は止まり、数100mAの蓄積された電子ビーム の放射光に10時間以上照射された後でも反射率には 特に目立った劣化は見られなかった。

FELの発振実験は最初は電子エネルギー600 MeV で行った。このエネルギーはブースターシンクロト ロンから蓄積リングへの入射エネルギーである。 FEL発振は波長214 nmから216 nmの領域で得られた。 測定されたスペクトルの一例を図1に示す。これま でのFELの実験は600 MeVで行われてきた。これは ストレージリングへの入射器のエネルギーであり、 また、一般にエネルギーが低いほどFEL増幅率が高 いからである。しかしFELの出力および電子ビーム の寿命を考慮すると、より高いエネルギーでの発振 のほうが有利である。ただしFELに発振に十分な増 幅率は必要である。今回の実験では通常の放射光利 用のときの電子ビームのエネルギーである750 MeV での発振を試みた。エネルギー750 MeVでは加速電 圧を150 kVまで上昇させることで、平均強度0.25 W までの大強度発振に成功した(図2)。また電子 ビームの寿命は600 MeVの場合と比べると約2.5倍に なった。これらの性質は利用実験に非常に有利であ る。エネルギー750 MeVでは加速電圧を150 kVまで 上昇させることで、平均強度0.25 Wまでの大強度発 振に成功した(図2)。また電子ビームの寿命は600 MeVの場合と比べると約2.5倍になった。215 nmの 波長域のFELは生体物質の照射実験に用いられた。 この実験では左右の円偏光の光を照射し、その生成 物のキラリティが測定された。UVSORのFELはオプ ティカルクライストロンの位相を変えることで、 FELの左右偏光を切り替えることができるので、

ユーザーは実験条件を変えることなく実験を行うこ とができた。また、ユーザーはこれまで放射光を用 いて実験を行ってきたが、大強度のFELを用いるこ とで非常に短時間で測定をすませることができた。

3. 波長域230 nmでの発振

波長域230 nmの発振も215 nmの場合と同様にユー ザー実験を目的として行われた。この波長が選ばれ たのは表面科学の実験におけるサンプルのイオン化 の測定に最適であるからである。また、FELを利用 した光電子分光の実験も行われ、この実験にも230 nm付近のFELが用いられた。230 nm付近の発振にお いてもAl₂O₃/SiO₂多層膜がミラーとして用いられた。 いずれの実験もFELは取り出しポートから10m以上 離れた実験装置の場所まで空気中を輸送され、石英 の窓を通して超高真空の実験装置に入射された。空 気中のレーザーの輸送にはアルミニウムにミラーを 用いた。図3にストレージリングに電流を蓄積して からの時間と電流値およびFELの出力パワーの関係 を示す。図から明らかなようにレーザーパワーは 1Wを越えていることがわかる。この出力はこれま での深紫外域のストレージリングFELを行っている 他の施設に比べると圧倒的に大きな強度である。し かしながらレーザー出力はビーム入射後急速に低下 し、30分で約0.65 Wになる。そこで共振器のミラー を調整することでパワーは0.8 Wまで回復する。 レーザー出力低下の原因は、共振器ミラーがオプ ティカルクライストロンからの放射光による熱負荷 によって膨張することで僅かにミラーのアライメン トずれてしまうためである。したがってミラーの調 整でレーザーパワーは回復する。このように電子

図3 波長230 nmのFELのパワーおよびそのときの電流値

ビーム入射直後のFELはあまり安定性がよくない ために、実際の利用実験は蓄積電流値が100 mA/bunch程度まで低下し、レーザーパワーは0.5W 程度になってから行われた。しかしながら、比較 的低電流になってもレーザーの位置が僅かにずれ ることが観測された。これまで行われてきたFELの 照射実験ではこのようなことは問題にはならな かったが、よりレーザーの質に敏感な光電子分光 等の利用実験をより有効に行うためには、UVSOR-II-FELを安定化することが必要であることがわかっ た。

4. 今後の展望

UVSOR-II-FELの利用実験は主に照射実験に用いられてきたが、最近はより高度なレーザー性質を利用する実験が行われるようになった。そのような利用実験のためにはレーザーをより安定化させる必要があり、これを進めていく予定である。また利用の幅を広げてゆくために、さらに200 nm以下の短波長領域での発振を進めてゆく予定である。

参考文献

- [1] H.Hama, et al., Free Electron laser and its Applications in Asia, (1997).
- [2] M. Hosaka et. al. Nucl. Instru. and Meth. A483 (2002).
- [3] M. Katoh et. al. Nucl. Instru. and Meth. A467 (2001).
- [4] A. Mochihashi et. al. UVSOR ACTIVITY REPORT 2005 (2006).