# **STATUS OF JAEA ERL (2006)**

Ryoichi Hajima<sup>1\*</sup>, Masaru Sawamura<sup>1</sup>, Ryoji Nagai<sup>1</sup>, Nobuhiro Kikuzawa<sup>1</sup>, Nobuyuki Nishimori<sup>1</sup>, Hokuto Iijima<sup>1</sup>, Tomohiro Nishitani<sup>1</sup>, Eisuke Minehara<sup>2</sup> <sup>1</sup>Japan Atomic Energy Agency, ERL Development Group Tokai, Ibaraki 319-1195 <sup>2</sup>Japan Atomic Energy Agency, Advanced Photon Source Development Unit Tokai, Ibaraki 319-1195

#### Abstract

A new resarch group towards future light sources based on energy-recovery linac has been established at Japan Atomic Energy Agency. In the research group, we are developing a high-power free-electron laser using 17 MeV-ERL, which was originally operated as a non-ERL FEL. We also started R&D for an ERL X-ray light source in collaboration with KEK. In this paper, we summarize these research activities.

# 原子力機構エネルギー回収型リニアックの現状 (2006)

### 1. はじめに

2005年10月に、日本原子力研究所と核燃料サイクル 機構が統合し、日本原子力研究開発機構が発足した。こ れに合わせて、自由電子レーザー研究グループは ERL 光量子源開発研究グループ(量子ビーム応用研究部門、 先進光源開発研究ユニットに所属)となった。これまで に蓄えた超伝導加速器、エネルギー回収型リニアックの 技術を基にして、高出力自由電子レーザー、次世代放射 光源などの研究を行っている。本稿では、ERL グルー プの研究の現況を報告する。

### 2. 高出力自由電子レーザーの開発

エネルギー回収型リニアック (17 MeV-ERL) を用い た高出力自由電子レーザーの開発では、2003 年から3 年間を費した入射器増強が完了した。電子銃グリッド パルサーの繰り返し周波数を従来の 10.1425 MHz から 20.285 MHz とすることで加速電流を5 mA から 10 mA に増大した。同時に、2.5 MeV 入射器の RF源 (2 台) を 6 kW 固体アンプから 50 kW-IOT に変更し、将来的に は、40 mA までの加速が可能な仕様となった [1]。主加 速器の RF源 (2 台) は 50 kW のままであるが、エネル ギー回収を行うことで RF 源容量の 2 倍の電流を加速し ている。図 1 に 17MeV-ERL のレイアウトを示す。

リニアック FEL ではスクリーンモニタやファラデー カップをビーム軌道上に挿入し、電子ビーム診断を行う のが通例であるが、エネルギー回収を行っている状態 (RF 源容量を超えた電流を加速している状態)では、モ ニタを挿入しビームを止めた瞬間にエネルギー回収が できなくなるので、このような破壊型のビームモニタは 使用できない。われわれの FEL 運転では、空洞のフィ リングタイム以下の短いマクロパルス(~30µsec)で調 整運転を行い、スクリーンモニタでビーム位置などの確 認を済ませた後、長いマクロパルスでエネルギー回収 運転を行う方法をとっている。短いマクロパルスでは、 スクリーンを挿入しても加速が止まることはないので、 この方法でうまくいっている。

入射器パラメータの最適化 [2]、1st-arc でバンチ圧縮 を行うビームオプティクスの採用などで、アンジュレー タ位置における電子バンチ長を設計値の 15 ps から 8 ps 程度まで短くすることに成功した(それぞれFWHM値)。 これに伴って電子ビームから FEL への変換効率が大き くなった。FEL 変換効率が大きくなると、電子ビームに 大きなエネルギー広がりが生じるので、エネルギー回収 が難しくなる。一般的な FEL 動作ではエネルギー広が リ(全幅)は変換効率の5倍程度である。JAEA-ERLで は、アンジュレータ下流の 2nd-arc のエネルギーアクセ プタンスは、四極磁石位置でのビームパイプ径で決ま リ、当初の設計では、FEL 変換効率 1.5% と設定し、規 格化エミッタンスを 30 mm-mrad とした時のエネルギー アクセプタンス 7%に対応する内径 55 mm のビームパ イプを使用していた[3]。最近の運転では、バンチ長が 短くなったために、FEL 変換効率とエネルギー広がり

<sup>\*</sup> E-mail: hajima.ryoichi@jaea.go.jp



図 1: 17MeV ERL

が大きくなり、2nd-arc でビーム電流の一部が落ちる現 象が観測されるようになった。このビーム損失に対応 するため、アンジュレータ下流の周回軌道 (2nd-arc)の エネルギーアクセプタンスを大きくする改造を施した。 四極、六極をボア径の大きなものに入れ換え、ビームパ イプの内径を 100 mm としたので、エネルギーアクセプ タンス当初設計の約2倍となった。FEL発振を行いな がらワイアースキャナーでエネルギー広がりを測定し、 アクセプタンス増大の効果を確認しながら、さらなる調 整を進めている。これまでに FEL 出力 0.7 kW (マクロ パルス内平均出力)が得られている。

## 3. ERL、FEL 利用実験

FEL 光を使った様々な実験を行うために、加速器室 から光実験室まで、約22mのFEL 光輸送系を設置し た。赤外(波長22µm)の光を損なうことなく輸送する ために、光共振器のセンターホールから出た光を二つの 楕円ミラーを用いて拡大し、ほぼ平行な光ビームとし た後に平面ミラーで輸送する方式を採用した。すでに 組み立てと調整を完了し、ほぼ100%の輸送効率が得ら れている。実験室内での集光特性も良好である。原子炉 シュラウドで問題となっている冷間加工応力腐食割れを レーザー非熱加工により防止する技術の実証、フェムト 秒チャープパルスを利用した量子制御実験の試みなどを 進めている[4]。

ERL では、蓄積リングに比べて短い電子バンチ加速 できるので、大強度のコヒーレント放射光の発生が期待 できる。京都大学、大阪府立大学との共同研究で、周回 軌道からのコヒーレント放射光の測定実験を行っている [5]。

## 4. 次世代放射光源のための電子銃開発

第3世代放射光施設 (SPring-8 など)を超える X 線放 射光源として、次世代放射光源の開発が世界各国で始 まっている。次世代放射光源では、コヒーレンスと超短 パルスがキーワードであり、このような X 線を発生す る方式として X 線自由電子レーザー(XFEL)とエネル ギー回収型リニアック(ERL)がある[6]。われわれは、 ERL-FEL開発で蓄えた超伝導リニアック技術を発展さ せて、ERL型次世代放射光源の実現にいたる開発計画 を提案し[7]、2006年3月には、同様の計画を提案して いる KEK と研究協力協定を締結し、共同で R&D を開 始した[8]。

ERL 放射光源を実現するために重要な要素技術が電子 銃である。われわれは、低エミッタンス(0.1 mm-mrad)、 大電流(100 mA)の電子ビームを安定に発生するための 技術開発を行っている。規格化エミッタンス 0.1 mmmrad は、XFEL 用の電子銃よりもさらに 1 桁小さなエ ミッタンスである。直径 2 mm、室温の陰極から発生す る電子の熱エミッタンスがおよそ 0.1 mm-mrad である ことを考えると、熱陰極電子銃の採用は不可で、光陰極 電子銃でもこれを満たすことは容易でない。唯一、原理 的に可能性のあるのは、NEA(negative electron affinity) 表面を有する光陰極電子銃である。

これまでに、NEA 表面を有する GaAs 陰極は、偏極 電子源、ERL-FEL 用電子源として実績があり、小さな 引きだし電流ではエミッタンス 0.1 mm-mrad が達成さ れている [9] [10]。また、大電流動作では JLAB-FEL で 10 mA の運転実績がある。

われわれは、JLAB の実績を超えた大電流動作 (100 mA)が可能な光陰極として、超格子構造をもつ Al-GaAsを提案し、その開発を進めている。従来のバルク GaAs では、大電流(高い量子効率)を得るには、バンド ギャップよりも大きなエネルギーをもつレーザー光子を 入射する必要があり、熱エミッタンスが大きくなってし まう。逆に、熱エミッタンスを小さく保つために、バン ドギャップぎりぎりのレーザー波長を選ぶと大電流が引 き出せない。これらの欠点は、バルク GaAs のバンド構 造に由来する現象であり、超格子構造を採用することで 解消できる。このような光陰極の性能評価を行うため のテストベンチを構築し、データの取得を始めている [11]。なお、光陰極の作成には、名古屋大学竹田研究室の協力を得ている。

DC 電子銃については、250 kV、50 mA の電子銃と極 高真空のカソード活性化チャンバー等の設計製作を行 い、今年度末には、DC 電子銃からの電子ビーム引き出 しができるように作業を進めている [12][13]。

#### 5. 次世代放射光源のための高周波機器の開発

ERL 放射光源の主加速器では、300 台を超える超伝 導空洞が並ぶ。空洞の機械的振動(マイクロフォニック ス)に由来する RF 振幅、位相の擾乱を補償するため に、各空洞を独立した RF 源で駆動するのが基本構成 である。したがって、RF 機器は、ERL 建設費の主要な 部分を占めることになる。われわれは、将来の ERL 放 射光源に備えた R&D として、30kW-IOT の試験、アナ ログ RF 制御系の開発進めている。これらの開発には、 17MeV-ERL の資産を最大限に活用している [14][15]。

#### 6. まとめ

原研 FEL から原子力機構 ERL へとグループの名称が 変わり、研究内容も高出力自由電子レーザーからさら に広がり、次世代放射光源に向けた技術開発が新しく 加わった。われわれが培ってきたエネルギー回収型リニ アックの技術は、赤外自由電子レーザー、X 線次世代放 射光源のみならず、テラヘルツからガンマ線までの全て の波長において、従来光源をはるかに上回る性能を実現 しうる加速器の普遍的な技術である。われわれは、この ERL 技術に磨きをかけて、これらの新しい光源の実現 を通して、広く、科学・産業に貢献していきたいと考え ている。

- 永井良治他, "JAEA ERL-FEL におけるミクロパルス繰返しの二倍化",本論文集.
- [2] 永井良治他, "シミュレーテッドアニーリングによる原研 ERL 入射部のパラメータ最適化", 2004 年加速器学会年 会論文集.
- [3] R. Hajima, and E. J. Minehara, Nucl. Instrum. Meth. A507 (2003) 141–145.
- [4] 飯島北斗他, "JAEA-FEL におけるチャープパルス計測の 現状",本論文集.
- [5] 高橋俊晴 他, "JAEA-ERL における CSR スペクトルの計 測", 本論文集.
- [6] 羽島良一, 放射光 14, 323-330 (2001).
- [7] 羽島良一, "エネルギー回収型超伝導リニアック (ERL) 次 世代放射光源とその拓く世界",日本放射光学会次世代光 源検討特別委員会公開シンポジウム,2005 年 4 月 12 日.

- [8] 河田洋他, "ERL 放射光源計画と R&D の現状", 本論文集.
- [9] B. M. Dunham , L. S. Cardman and C.K. Sinclair, PAC-1995, 1030.
- [10] 山本尚人 他, "NEA-GaAs 型フォトカソードの初期エミッ タンス測定",本論文集.
- [11] 西谷智博 他, "高輝度 NEA-AlGaAs フォトカソード電子 源の開発", 本論文集.
- [12] 飯島北斗 他, "ERL 光量子源のためのフォトカソード DC 電子銃開発の現状",本論文集.
- [13] 永井良治 他, "ERL 放射光源のためのロードロック型電 子銃の設計", 本論文集.
- [14] 永井良治他,"アナログ位相・振幅制御型 RF 制御装置の 位相安定度測定",本論文集.
- [15] 沢村勝他, "IOT 高周波出力特性", 本論文集.