WEOT05  電子加速器  7月31日 テルサホール 16:40-17:00
排水浄化のための5MeV SRF電子リニアックの数値解析
Numerical study of 5 MeV SRF electron linac for wastewater purification
 
○カバール アンジャリバグワン,柏木 茂,武藤 俊哉,安彦 颯人,日出 富士雄,工藤 滉大,長澤 育郎,南部 健一,柴田 晃太朗,高橋 健,山田 悠樹,濱 広幸(東北大先端量子)
○Anjali Bhagwan Kavar, Shigeru Kashiwagi, Toshiya Muto, Hayato Abiko, Fujio Hinode, Kodai Kudo, Ikuro Nagasawa, Kenichi Nanbu, Kotaro Shibata, Ken Takahashi, Hiroki Yamada, Hiroyuki Hama (RARIS, Tohoku University)
 
Superconducting Radio Frequency (SRF) technology is a proven solution for generating high-power electron beams (EB), suitable for tasks like purifying wastewater from challenging impurities like PFAS. This study elaborates on effectiveness of EB treatment and outlines design considerations for a 1.3 GHz SRF linac operating at 5 MeV with an average beam current of 10 mA. Given the need for high beam current, achieving a high bunch repetition rate is paramount. The primary focus of this paper is on the design of an injector system that accepts the time-width of the bunch produced by the electron gun as long as possible and compresses it to a bunch length suitable for smooth acceleration to 5 MeV in a 1.3 GHz linac. Numerical analyses for the accelerator system, ensuring that the beam reaches 5 MeV with the desired characteristics, lead to a compact beamline structure. This structure includes a 100 kV thermionic gridded gun, a 650 MHz buncher cavity, a 1.3 GHz 3-cell low beta booster cavity, and three 2-cell 1.3 GHz accelerator cavities, along with necessary focusing solenoids, all fitting within ~4 meters. The results of the numerical studies will be presented at this conference.