PASJ2022 WEP040

加速器冷却水系で発見された異物の化学的評価

CHEMICAL EVALUATION OF FOREIGN SUBSTANCE FOUND IN ACCELERATOR COOLANT SYSTEMS.

石田 正紀[#], 野上 隆史, 山本 将博, 谷本 育律, 本田 融, 植木 竜一, 武智 英明 Masaki Ishida[#], Takashi Nogami, Masahiro Yamamoto, Yasunori Tanimoto, Tohru Honda, Ryuichi Ueki, Hideaki Takechi High Energy Accelerator Research Organization (KEK)

Abstract

The generation and deposition of foreign substances have been observed in the cooling water systems of accelerators. Currently, it is managed through regular maintenances, but the prevention and reduction of the foreign substances' generation is an important issue to improve the efficiency of management. It is known that most of the foreign substances are corrosion products of copper materials (e.g., hollow conductors) in the cooling water system. The appearances of the foreign substances are not same, and they depend on the sampling points. In this study, the foreign substances were organized by sampling points and measured with analytical equipment. The appearances of the samples were observed in detail under microscopes. They were determined the component ratios with quantitative analysis methods and the relationships between the results and their appearances were discussed. It was suggested that the various appearances of the foreign substances were related to the difference in corrosion progression. This fundamental research would lead to understand the chemical corrosion processes within the cooling water systems and develop effective solutions for them.

1. はじめに

KEKにある加速器施設の冷却水系内(以降、系内)に おいて異物の発生及び堆積が確認されてきた。本学会 でも、つくばキャンパス、東海キャンパスの両施設におい て、異物の発見及びその対処に関する報告がなされて いる[1-5]。私の所属する放射線科学センター環境計測 グループでは、異物の成分分析を実施してきた。異物の 多くは酸化銅であり、系内で使用されている銅材料(ホ ローコンダクター、銅配管等)の腐食生成物と推定される。 冷却水系設備に限らず、水と金属が接触する場所では 腐食は避けられない問題である。様々な環境における金 属の腐食生成物について既報にまとめられている[6]。

冷却水系では、一般的に防錆剤を添加して金属表面 に薄い皮膜を形成させ腐食を抑制する。しかし、これを そのまま加速器施設に適用するのは現実的ではない。 一口に加速器施設と言ってもその冷却対象は多岐に渡 る。その中でもメインの冷却対象と言えるのが電磁石で ある。本誌で扱う異物も多くが電磁石の冷却水系で発見 されている。電磁石にはコイル部分にホローコンダクター (ホロコン)と呼ばれる中空構造の銅製磁気巻線が使用 される。電磁石コイルのホロコン内部に冷却水を通すこと で効率的な冷却を可能としているが、冷却水は細く長い ホロコン内部を長時間流れることなる。この水冷電磁石 が SuperKEKB 主リングだけで 1700 台以上あり[7]、それ ぞれに冷却水が張り巡らされている。また、電子/陽電子 加速器と陽子加速器で程度の差はあるが、放射線が発 生する場所でもある。このように加速器施設では一般的 な冷却水系とは事情が異なり、取り敢えず防錆剤を入れ ましょうとはいかない。

多数ある水冷電磁石では冷却水は長時間銅と接する

ため、銅の腐食生成物が発生しやすい環境となる。現状 は、現場での日々の管理により対処しているが、管理の 省力化、効率化を目指すうえでも、異物発生の防止、低 減は重要な課題である。金属の腐食は化学的プロセス であり、その対処法にも化学的アプローチは不可欠と考 えられる。効果的な対処法を検討するためにも、系内で の腐食過程を化学的見地から理解することは重要と言え る。これまでは定性的な異物の成分分析に留まっており、 単発的にこれを繰り返すだけでは腐食過程の理解には つながらない。これまで、発見場所ごとに異物の外観が 異なる傾向が見られており、場所により腐食の進行過程 が異なると考えられる。そこで定性的な分析に加えて、 異物を発見場所ごとに整理し、外観の違いを構成成分 比(w%)として定量評価することで腐食過程の理解への 足掛かりになると考えた。

現状、腐食過程の理解には至れていないが、ここでは 異物の系統的な化学評価結果をまとめたので報告する。 つくばキャンバスの加速器施設を対象とし、異物を大きく 2のグループに分けた。1つは入射器(LINAC)からダン ピングリング(DR)、ビームトランスポート(BT)、 SuperKEKBメインリング(KEKB)にかけて各エリアで発 見された異物である。2つ目はフォトンファクトリー(PF)リ ング M7-B 冷却水系で発見された異物である。異物の成 分分析に加えて冷却水の分析も実施し、それらの結果を 踏まえて、腐食の要因についても簡単に述べる。

2. 異物の化学的評価方法

異物の評価手法として用いたのはデジタルマイクロス コープ(DM)(Leica 社製 DVM6)、エネルギー分散型 X 線分析装置付き卓上型電子顕微鏡(SEM/EDS)(SEM: 日立ハイテク社製 Miniscope TM3000、EDS:Bruker 社 製 Quantax70)、卓上型 X 線回折装置(XRD)(スペクト リス社 Malvern Panalytical 製 Aeris)である。

[#] masaki.ishida@kek.jp

Proceedings of the 19th Annual Meeting of Particle Accelerator Society of Japan October 18 - 21, 2022, Online (Kyushu University)

DM は異物の拡大観察、SEM/EDS は異物の構成元 素の確認に使用した。XRD は異物の定性及び構成成 分比の定量に使用した。その例をFig.1に示す。XRD は 無機化合物の定性における強力な手法だが、あくまで結 晶構造の違いを回折パターンとして検出するだけである。 定性分析に利用する場合、SEM/EDS 等の元素分析と 併用するのが一般的である。結果の解析には、装置付 属のソフトウェア High Score 及び粉末回折データベース PDF-2 2019を使用した。

異物の構成成分比の定量には回折パターンに対して RIR (Reference Intensity Ratio) 法もしくはリートベルト解 析を適用した。RIR 法では試料の回折パターンにおける 最強線の積分強度と、データベースに記載される RIR 値 を比較し、簡易的に成分比を算出する。リートベルト解析 は、バックグランドを含めた回折パターン全体を再現する よう最小二乗法によりフィッティングする手法であり、格子 定数等の複数のパラメーターを精密化して決定できる。 パラメーターの1つに回折パターンの強度と関連するス ケール因子がある。このスケール因子は成分比と結びつ くため、スケール因子を含めて精密化することで成分比 の定量が可能になる。原則、リートベルト解析による定量 を実施し、リートベルト解析で定量値が得られなかった異 物についてはRIR 法を適用した。これら定量法の詳細に ついては成書を参照されたい[8]。RIR 法は前述の High Score 及び PDF-2 2019 で実施し、リートベルト解析には、 Match! 3、FullProf 及び Crystallography Open Database を使用した。

3. 銅の腐食と腐食生成物

銅の腐食とその腐食生成物については、様々な事例 が報告されている[6,9-12]。水中における主な腐食生成 物は、赤褐色~赤色固体の酸化銅(I)(Cu₂O)と黒色固 体の酸化銅(II)(CuO)である。条件により緑青(塩基性炭 酸銅等)が生じる場合もある。Cu₂O/CuO 混合物の場合、 Cu₂O の割合が多いと明るく褐色~赤味を帯びた外観に、 CuO の割合が多いと暗褐色~黒色の外観になる。簡単 に腐食過程を表現すると、最初に Cu₂O が生成し、80℃ 付近の高温環境で酸化が進み CuOとなり、Cu₂O/CuOが 水分を含んだ大気に長期間さらされると緑青(塩基性炭 酸銅等)が生成する。実際には環境に応じてその過程は 複雑多様となる。腐食の主要因は水中の溶存酸素であ る。極端な話だが、溶存酸素濃度を極低濃度にできれ ば銅の腐食は防止できる[9]。銅配管中を水が流れる例 では、温度条件により Cu₂O[11]/CuO[12]の違いがあるが、 配管表面に酸化銅の皮膜が形成され、防蝕の役割を果 たすとされる。ただ、流速や溶存イオンの影響で皮膜が 剥離すると腐食が進行することになる。

4. 異物の評価結果

4.1 LINAC-DR-BT-KEKB

最初に LINAC から KEKB にかけて発見された異物 について述べる。調査対象は、2020~2022 年 9 月まで に持ち込まれた異物 9 種である。多くが純水の流れる電 磁石系統で発見された。KEKB 系では各所で異物の発 生・堆積は確認されるものの、管理の工夫、マメなメンテ ナス等、現場での努力により、近年は加速器運転に大き な支障は出ていないようである[1-3,13,14]。

発見された異物の外観、成分は Fig. 2 のとおりである。 発見場所ごとに外観、成分が異なっている。LINAC では CuO、DR・BT では Cu₂O、CuO、金属 Cu の混合物、 KEKB では場所に様々な異物が発見されている。KEKB のアレス空洞チラー(D8E)、ビーム最終収束用超伝導電 磁石システム(QCS)、衝突点流量計については、電磁 石系統とは環境が大きく異なるため、今回は事例紹介に 留めるものとする。

Figure 1: Example of chemical analysis of foreign substances. Appearance, EDS spectrum and X-ray diffraction pattern of foreign substances.

Proceedings of the 19th Annual Meeting of Particle Accelerator Society of Japan October 18 - 21, 2022, Online (Kyushu University)

PASJ2022 WEP040

LINAC BM_61_A3	LINAC BM_61-1	KEKB 3M電磁石	
CuO	CuO	CuO	
DR SF2電磁石	DRバルブ	KEKB BT電磁石	
Cu ₂ O, CuO	Cu ₂ O, CuO, Cu	Cu₂O, CuO	
アレス空洞 (D8E)	QCS-L	衝突点流量計	
Cu ₅ (MoO ₄) ₂ (OH) ₂	Fe ₃ O ₂ , Cu ⁺¹ Fe ⁺² O ₂	Cu ₂ (OH) ₂ (CO ₃)	

Figure 2: Appearance of foreign substances (KEKB)

Figure 4: Appearance of foreign substances (PF M7-B).

Figure 5: Compositional ratios of foreign substances (PF M7-B).

異物の外観の違いを成分比として定量化し、比較した ものを Fig. 3 に示す。全体的には CuO が異物の主要成 分である。電磁石系統では冷却水と大気の接触は少な いと考えられ、緑青は生成せず CuO で止まると思われる。 DR、BT で発見される異物は Cu₂O の割合が多く、酸化 の進行具合が異なっている。また、DR では金属 Cu を含 む異物が発見されているのも気になる点である。

4.2 PF リング (M7-B)

PF リングは建設から 40 年以上が経過し、老朽化の影響は避けされないようだが、日々の管理、老朽化対策及 び高度化の努力が続けられている[15]。しかし、ここ最近 は異物の発生が増えたと聞いている。実際、調査の対象 としたのは 2022 年 3~5 月の短期間に持ち込まれた異 物 12 種である。VW14ビームダクトは 2019 年、VW14 冷 凍機は 2021 年に採取されたものである。M7-B 系統は PF リング及び PF 電源棟の冷却系であり、純水が流れて いる。12 種の異物の内 9 種は電磁石ストレーナーに付 着していたものである。

発見された異物の外観は Fig.4 のとおりである。いず れも酸化銅だが、外観の違いがはっきりと見てとれる。ま た、ストレーナーの外側は赤褐色、内側は黒色の異物が 多い傾向が見られる。この違いを成分比として定量化し た結果が Fig.5 である。外側は Cu₂O、内側は CuO が主 要となっており、外観の違いを定量化できている。また、 興味深い点として 100 %Cu₂O と 100 %CuO の中間領域 にあたる異物には、KEKB 系と同様に金属 Cu が検出さ れたことが挙げられる。銅材料が水の流れにより削られ、 それが腐食の始点となっている可能性がある。

ストレーナーの外側は Cu₂O、内側は CuO となる理由 だが、現状はっきりとは分かっていない。この違いは、スト レーナーの内外で腐食の進行具合が異なることを意味 する。水中の酸素拡散が最大になる水温 80℃を超える と CuO が優勢になるとされるが[6,12]、ストレーナーの内 外で大きな温度差が生まれるとは考えにくい。異物への 酸素供給に関連するのは、温度以外だと冷却水の流れ 方だと考えている。異物の微細構造を SEM で確認する と、Cu₂O、CuO かに関わらず外側の異物は粒が大きく成 長し、内側の異物は粒が細かく密に詰まっている

Figure 6: SEM image of foreign substances.

(Fig. 6)。外側近傍は、粒が成長できるようなある程度 整った流れであり、内側はより不規則な流れ方である影 響だと予想している。

5. 冷却水の分析

異物と同時に冷却水そのものの分析も実施した。項目 は pH、イオン成分濃度(Cl⁻、NO₃⁻、SO₄²⁻)、溶解性元素 濃度である。pH については、LINAC BM RO-6/-1、BM 61-6/-1、KEKB 機械棟 3M/6M/9M/12M/富士/日光/筑 波/大穂、PF リング M7-B について調査した。KEKB 機 械棟の pH については、継続測定を実施しており、過去 にその結果が報告されている[3]。今回調査したのは 2022 年 6~7 月に採水された冷却水である。pH はいず れも 6 程度であり中性あった。イオン成分濃度(Cl⁻、 NO₃⁻、SO₄²⁻)、溶解性元素濃度については、RO-6/-1、 61-6/-1、M7-B について調査した。RO-6、61-6、M7-B の 結果についてTable 1 に示す。いずれも低レベルであり、 RO-1、61-1も同様の結果であった。今回の結果の限りで は、冷却水には pH の変動、金属成分の溶出等は起こっ ておらず、適切に管理されていることが確認できた。

Table 1: Quantitative Analysis Results of Cooling Water

mg/L	BM RO-6	BM 61_6	M7_B
採水月	2022/07	2022/07	2022/06
Cl-	不検出	0.52	0.05
NO_3^-	不検出	0.02	不検出
$\mathrm{SO}_4{}^{2-}$	不検出	0.31	0.03
Al	< 0.0006	< 0.0006	0.05
Ca	< 0.001	0.19	< 0.001
Cd	< 0.0002	< 0.0002	< 0.0002
Cr	< 0.001	< 0.001	< 0.001
Cu	0.10	< 0.02	0.3
Fe	< 0.003	< 0.003	< 0.003
Κ	0.09	0.18	0.12
Mg	< 0.0003	< 0.0003	< 0.0003
Mn	< 0.0002	< 0.0002	< 0.0002
Na	0.08	0.42	0.18
Ni	< 0.002	< 0.002	< 0.002
Si	0.08	0.10	0.56
Zn	0.005	0.03	0.17
Pb	< 0.004	< 0.004	0.10

6. 腐食の環境因子

腐食の基本的環境因子[16]と今回の結果を踏まえて、 現状で分かったことを整理する。腐食に関わる環境因子 はpH、溶存酸素、溶存イオン、温度、水流速の5つであ

PASJ2022 WEP040

る。pH、溶存イオンは、冷却水の分析結果から腐食との 関連性は低いと言える。温度に関しては水温 80 ℃付近 で溶存酸素による酸化が最も進行しやすくなる。M7-B の温度履歴の限りではリングへの入り、戻りともに 30 ℃ 前後であり、腐食との関連は小さそうだが、局所的な温 度上昇等、冷却水系内での温度分布がどのようになって いるかは気になる点である。溶存酸素に関しては酸化銅 が発見されている以上、腐食の主要因であることは自明 である。これを現実的なやり方でどこまで低減できるかが 重要な課題である。水中の溶存酸素の除去法には、加 熱沸騰脱気、超音波脱気、真空減圧脱気、窒素注入脱 気等、いくつか種類があり、冷却水系に導入するための 脱酸素装置も市販されている。しかし、手軽に導入でき るものではない。最も手軽なのは中空糸膜を利用した脱 酸素用フィルターである。大規模な冷却水系にフィル ターを入れたところで効果があるかは疑問だが、どの程 度の腐食防止効果があるかは検証したいと考えている。 続いて水流速だが、溶存酸素と同じく影響が大きいと思 われる。酸化銅皮膜を削ってしまう他に、M7-B 異物の成 分比の結果から、冷却水により銅そのものが削られて生 じる微小片が腐食生成物の出発点となる可能性が示唆 された。これはホロコン、銅配管の表面を何かしらで保護 できれば低減できる。今後の展開の1 つとして、防錆剤 含め表面保護手法を調査、検討したい。

今後、加速器冷却水系での腐食過程をさらに理解す るには、環境因子を制御可能なモデル流路を作製し、流 路内環境と腐食生成物の関係性を調査する必要がある。 また、費用対効果を適切に考慮する必要があるが、冷却 水系の複数カ所に pH・導電率計、溶存酸素計、温度計 を設置し、リアルタイムで環境をモニタリングできれば、発 見された異物と系内環境の関連性を把握できる。私のグ ループ単独でこれ以上の調査・検討を進めていくことは 難しい。多くの関係者の方にお話を伺い、可能な範囲で 協力を得ながら、更なる調査・検討を進められればと 思っている。

7. まとめ

異物を発見場所ごとに整理し、外観、成分、成分比を 比較した。場所ごとに外観が異なっており、その違いを 成分比として定量化した。異物の主成分、腐食の進行具 合が異なることを定量的に明らかできた。しかし、発見さ れた異物を調べるだけでは限界があり、腐食過程の理 解にはつながらないことも分かった。とは言え、KEK 各 所で異物は発見されているが、それらを整理してまとめ た結果はこれまでに無く、この結果は腐食過程の理解、 対処法検討のための基礎的情報になると考えている。

謝辞

分析データの使用、冷却水系に関する情報提供等で お世話になりました加速器研究施設 植田 猛氏、大澤 康伸氏、田中 窓香氏、長橋 進也氏、古澤 将司氏にこ の場をお借りしてお礼申し上げます。

参考文献

- R. Ueki et al., "SuperKEKB 主リング電磁石システムの運転報告", Proceedings of the 13th Annual Meeting of Particle Accelerator Society of Japan August 8-10, 2016, p. 1200-1203.
- [2] Y. Ohsawa et al., "SuperKEKB 電磁石用冷却水の現状", Proceedings of the 15th Annual Meeting of Particle Accelerator Society of Japan, August 7-10, 2018, p. 1238-1241.
- [3] Y. Ohsawa et al., "SuperKEKB 電磁石の運転と冷却水 pH の変化の関係", Proceedings of the 16th Annual Meeting of Particle Accelerator Society of Japan, July 31-August 3, 2019, p. 962-966.
- [4] K. Suganuma et al., "J-PARC リニアックにおける冷却水への微量金属混入の調査", Proceedings of the 16th Annual Meeting of Particle Accelerator Society of Japan, July 31-August 3, 2019, p. 846-848.
- [5] T. Ueda et al., "電磁石ホローコンダクタ洗浄の検討", Proceedings of the 18th Annual Meeting of Particle Accelerator Society of Japan, August 9-12, 2021, p. 256-258.
- [6] M. Kasai *et al.*, 日立評論, Vol.52, No.11, 1970 p. 59-64.
- [7] T. Oki et al., 低温工学, Vol.53, No.3, 2018, p. 146-153.
- [8] 中井泉・泉富士夫. 粉末X線解析の実際第3版.
- [9] M. F. Obrecht et al., 防食技術, 11 巻 12 号 1962, p. 537-542.
- [10] H. Matsuoka et al., 防食技術, 19 巻 9 号 1970 p. 383-391.
- [11] K. Nagata et al., 軽金属, 37 巻 1 号 1987, p.89-99.
- [12] R. Minamitani et al., Zairyo-to-Kankyo, 50 巻 5 号 2001, p.231-236.
- [13]Y. Ohsawa et al., "SuperKEKB 電磁石用冷却水の現状(2)", Proceedings of the 19th Annual Meeting of Particle Accelerator Society of Japan, October 18-21, 2022.
- [14] M. Furusawa et al., "SuperKEKB HER-QA マグネットの冷 却水配管清掃", Proceedings of the 19th Annual Meeting of Particle Accelerator Society of Japan, October 18-21, 2022.
- [15] Y. Kobayashi et al., "KEK 放射光源加速器 PF リングと PF-AR の現状", Proceedings of the 18th Annual Meeting of Particle Accelerator Society of Japan, August 9 12, 2021, p. 580-584.
- [16] S. Magaino *et al.*, 実務表面技術, Vol.35, No.4, 1988, p. 190-195.