次世代光源において過渡的ビーム負荷 補償を行うためのキッカー空洞の検討

内藤大地*A)、坂中章悟A)、山本尚人A)、高橋毅A)、山口孝明B) A) KEK、B)総研大

Contents

・イントロダクション

- ・次世代光源での課題
- ・キッカー空洞による過渡的ビーム負荷補償
- ・キッカー空洞の具体的検討
 - ・空洞パラメータの検討
 - ・キッカー空洞のデザイン
- ・まとめ

次世代光源での課題1

- ・次世代光源:極低エミッタンスの達成 (ε << 1 nm-rad)
- ・3GeVクラスの次世代光源の課題:バンチ内散乱の抑制

常伝導の主空洞と高調波空洞を使ってバンチ長を伸ばし、バンチ内散乱を抑制。 PASJ2020 THOT09, D. Naito 03

次世代光源での課題2

<各空洞電圧の例>

・過渡的負荷により、 バンチ伸長が抑制されてしまう。

キッカー空洞によるビームローディング補償

広帯域の常伝導キッカー空洞でバンチ毎に異なる電圧を与え、 主空洞と高調波空洞に発生する過渡的 電圧変動を補償する。

キッカー空洞によるビームローディング補償

<KEK-LS(PFの次期計画の1つ)を仮定した時のバンチ伸長[1]>

	-
条件	バンチ長
3倍高調波空洞なし	9.5 ps
3倍高調波空洞あり	30.5 ps
3倍高調波空洞+キッカー空洞	40.9 ps
バンチギャップなし	42.5 ps

キッカー空洞を導入することで 十分な補正を達成。

[1]N. Yamamoto, T. Takahashi, S. Sakanaka, "Reduction and compensation of the transient beam loading effect in a double rf system of synchrotron light sources", Physical Review Accelerators and Beams **21** (1) (2018) 012001.

キッカー空洞で発生すべき補償用電圧(Vg)

先行研究で仮定された

キッカー空洞のパラメータ

変数	值
-3dB 幅	5 MHz
空洞電圧(Vg)	50 kV
共振周波数	500 MHz
R/Q	175 Ω

キッカー空洞で発生すべき補償用電圧(Vg)


```
先行研究で仮定された
```

キッカー空洞のパラメータ

キッカー空洞で発生すべき補償用電圧(Vg)

先行研究で仮定された

キッカー空洞のパラメータ

変数	值	過渡的電圧変動の補償に
-3dB 幅	5 MHz	必要なパラメータ
空洞電圧(V。)	50 kV	
共振周波数	500 MHz	
R/Q	175 Ω	
β(RF結合度)	399	具体的には未検討

キッカー空洞で発生すべき補償用電圧(Vg)

3つの観点から最適なパラメータを検討した。

1. キッカー空洞での過渡的電圧変動(1)

- ・補償電圧 = $\overrightarrow{V_g}$ + $\overrightarrow{V_b}$ (空洞電圧+ビームにより発生する電圧)
 - ・Vb一定=>問題なし。
 - ・Vbの変動大=>電圧変動の補償に影響が出る。
- ・バンチギャップによりキッカー空洞に発生する過渡的な電圧変動を計算。
- ・ビームによってN番目のバケットに発生する電圧Vb(N)は

<先行研究でのパラメータ>

V_{b01} , V_{b01} , V_{b01}	シンボル	/ パラメータ	値
$V_b(N+1) = A[V_b(N) + \frac{1}{2}] + \frac{1}{2}$	A	バンチ間隔とバンド幅で決定	0.97
R	q	バンチ電荷	1nC
$V_{b0} = \pi f_a \frac{\pi}{2} q$ (ギャップ中は0)	f_a	共振周波数	0.5 GHz
Q^{-1}	R/Q	shunt impedance/無負荷Q	175 Ω

1. キッカー空洞での過渡的電圧変動(1)

<先行研究でのパラメータ>

$$V_b(N+1) = A[V_b(N) + rac{V_{b0}}{2}] + rac{V_{b0}}{2}$$

 $V_{b0} = \pi f_a rac{R}{Q} q \ (ギャップ中は0)$

シンボル	パラメータ	値
А	バンチ間隔とバンド幅で決定	0.97
q	バンチ電荷	1nC
\mathbf{f}_{a}	共振周波数	0.5 GHz
R/Q	shunt impedance/無負荷Q	175 Ω

<先行研究での空洞電圧(Vg)と過渡的電圧変動>

先行研究での過渡的 電圧補償を実現するには∆V_b < 5.5 kVが必要。

1. キッカー空洞での過渡的電圧変動(2)

・前ページの式から平衡状態の電圧変化を計算する。

 $\Delta V_b = f_a \frac{R}{Q} C$ C:バンド幅、バンチ数、バンチ電荷、バンチ幅から決まる定数

・キッカー空洞共振周波数として主RF周波数、2倍高調波、3倍高調波を検討。

先行研究での∆VbになるR/Q

Resonance frequency	$R/Q(\Omega)$
500 MHz	175
1.0 GHz	88
1.5 GHz	58

5 MHzのバンド幅の際に、各共振周波数で満たすべきR/Qの上限値を算出。 =>fa×R/Q < 87.5 (GHz・Ω)

2. キッカー空洞への入力電力

160⊑

$$P_g = \frac{(1+\beta)^2}{4\beta R} V_g^2 \sim \frac{\Delta f}{4f_a} \frac{1}{R/Q} V_g^2$$
 (β>>1を考慮)

<Vg=50kV, ∆f=5 MHzの時の相関>

fa: 共振周波数

(kW) 140 f_a = 0.5 GHz ~ പ് f_a = 1.0 GHz 120 f_a = 1.5 GHz 100 入力電力を最小化 $: f_a R/Q \uparrow$ 80 過渡的電圧変動を最小化:*f*_aR/Q↓ 60 40 20 Գ 50 100 150 200 300 250 $R/Q(\Omega)$

> f_R/Qは前ページで求めた上限値が適切。 $f_a R/Q = 87.5 (GHz \cdot \Omega)$

3. キッカーの加速モードによる結合バンチ不安定性

- ・キッカー空洞を使用しない場合に、共振周波数をずらしておく事が可能かを計算。
- ・0.5 GHz、1 GHz、1.5 GHzのそれぞれに最適なR/Qで共振周波数を変えていき、 結合バンチ不安定性のモード毎のgrowth rateをそれぞれ計算。

<Growth rateと共振周波数の相関>

・共振周波数が0.5又は1.0 GHz:大きく共振周波数をずらせる。

3. キッカーの加速モードによる結合バンチ不安定性

- ・キッカー空洞を使用しない場合に、共振周波数をずらしておく事が可能かを計算。
- 0.5 GHz、1 GHz、1.5 GHzのそれぞれに最適なR/Qで共振周波数を変えていき、
 結合バンチ不安定性のモード毎のgrowth rateをそれぞれ計算。

<Growth rateと共振周波数の相関>

- ・共振周波数が0.5又は1.0 GHz: 大きく共振周波数をずらせる。
- ・共振周波数が1.5 GHz:共振周波数は±5 MHzしかずらせない。

要求値のまとめ

・検討の結果、どの周波数でも実現可能な事を確認。

Parameter	0.5 GHz	1 GHz	1.5 GHz
$R/Q\left(\Omega ight)$	175	88	58
ΔV_b (kV)	5.4	5.4	5.3
P_g (kW)	35.7	35.5	35.9
De-tune	Yes	Yes	No

Single mode cavity : 空洞半径に対しビームダクトが大きくR/Qが小さい(<80Ω)。

高次モードがビームパイプへ伝播するので空洞本体にダンパーが不要。

1.5 GHzのsingle mode cavityをキッカー空洞として提案。

キッカー空洞の具体的デザイン

・空洞本体、2本の導波管型RF入力、2個のマイクロ波吸収体、テーパー菅から構成。

1. 空洞パラメータの実現。

2. 高次モードによる結合バンチ不安定性の抑制。

=>電磁場シミュレーションコード(CST)を使って各コンポーネントを最適化。

- 1. 空洞パラメータの実現(1)
 - ・空洞パラメータを満たすデザイン設計。

=>Eigenmode solver+ frequency domain solverで最適化。

1. 空洞パラメータの実現(2)

・最適化後にCSTの二つのsolverで計算(Vg=50 kVを仮定)、計算結果の妥当性を担保。 =>よく一致しており、要求を満たす性能を達成。

Parameter	Eigenmode	Frequency domain
Frequency	1.50001 GHz	1.50003 GHz
R/Q	59.23 Ω	59.54 Ω
Q	16853	16814
Q_L	296	291
P_c	2.52 kW	2.53 kW
Max power density	26.6 W/cm^2	25.1 W/cm ²

- 2. 高次モードによる結合バンチ不安定性の抑制(1)
 - ・高次モードの結合インピーダンスを最小化。

=>Wake field solverで最適化。

2. 高次モードによる結合バンチ不安定性の抑制(2)

<吸収体の違いによる結合インピーダンスの変化> 縦方向の結合インピーダンス 横方向の結合インピーダンス Ferrite Ferrite SIC SIC Impedance (Ω) Impedance (Ω/m) 10⁵ 10⁵ threshold threshold 10⁴ 10⁴ 10³ 10³ 10² 10² 10 10 ¹0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Frequency (GHz) Frequency (GHz)

SIC→フェライトで最大の結合インピーダンスが1/4に。

2. 高次モードによる結合バンチ不安定性の抑制(2)

<最適化後の結合インピーダンス>

- ・縦手方向:TM010モードのピークが存在=>growth rateはほぼゼロになるので問題なし。
- ・横方向:TM120モードのピークが存在=>閾値の1/4以下で問題なし。

過渡的ビーム負荷 補償用空洞の具体的なデザインを世界で初めて実現。

まとめと今後

- ・次世代光源で問題となる、ダブルRFシステムの過渡的電圧変動を 補償するためのキッカー空洞の具体的デザイン検討を行った。
 - ・過渡的ビームローディング、入力電圧、結合バンチ不安定性の観点から 共振周波数とR/Qの値を再検討。
 - ・1.5 GHzのsingle mode cavityを具体的デザインとして提案。
- ・キッカー空洞デザインの最適化
 - ・電磁場シミュレーションコード(CST)で各要素の最適化を行なった。
 - ・過渡的 電圧変動 補償用 空洞の具体的なデザインを世界で初めて実現。
- ・今後
 - ・キッカー空洞のコールドモデル製作。
 - ・補正手法/回路の具体的な設計。