

SPring-8における新設計の 傾斜配置型 <u>光位置モニタ</u>と 蓄積リングのフィリング・パターンによる影響削減

Newly Designed Inclined X-ray Beam Position Monitors and Reduction of Influence due to Filling Patterns of the SPring-8 Storage Ring

青柳 秀樹 ,古川 行人,高橋 直

Hideki Aoyagi, Yukito Furukawa, Sunao Takahashi

(公財)高輝度光科学研究センター Japan Synchrotron Radiation Institute (JASRI)

1. はじめに

従来のXBPM(光位置モニタ)の役割、原理、構造

<u>挿入光源ビームライン (ID-BL)用</u> XBPM、 <u>偏向電磁石ビームライン (BM-BL)用</u> XBPM

2. 蓄積リングのフィリング変更が与える影響

フィリングの種類、XBPMが受ける影響の定量化(系統的な評価試験)

3. 影響が生じる原因と対処法

光電子の空間電荷効果、光電子収集電極の印加電圧との関係

4. 傾斜配置型XBPM

構造、評価試験の結果

5. まとめ

略称:

- 光位置モニタ → X-ray Beam Position Monitor (XBPM)
- 挿入光源 → Insertion Devise (ID)
- 偏向電磁石 → Bending Magnet (BM)

放射光ビームライン → Beam Line (BL)

■ 2. 蓄積リングのフィリング変更が与える影響 フィリング・パターンの種類

<u>マルチバンチ</u>(CW的利用に適する、長い寿命)

160 bunch train × 12 ・ ・ ・ Bunch train (最も負荷が小さい) 周長:1,436 mRF周波数:508 MHzハーモニックナンバー:2,436最短のパルス間隔:2.0 ns蓄積電流値:100 mA

→ ← トレイン間隔 86.5 ns

(cf. $1 \text{ mA} / \text{bunch} = 3 \times 10^{10} \text{ e}^{-}$)

<u>セベラルバンチ</u>(時間分割実験、ユーザー運転で供用)

■ 2. 蓄積リングのフィリング変更が与える影響 XBPMへの影響の評価結果

マルチバンチ(multi)における XBPMの読み値を基準として

5

セベラルバンチでの読み値の偏差で評価した。

フィリング・パターン毎のバンチ電流値とXBPMへの影響の程度(RMS値)

Filling	Bunch train	Isolated bunch	ID-BL (µm RMS) <mark>before</mark>		ID-BL (µm RMS) after		BM-BL (µm RMS)
pattern	(mA/bunch)	(mA/bunch)	Horizontal	Vertical	Horizontal	Vertical	Vertical
Multi	0.05	_	3.6	2.0			1.3
11/29 + 1	0.10	5.0	13.9	5.8			3.0
203	_	0.5	17.6	12.6			6.0
11 x 29	0.31		27.7	14.6	2.7	2.0	4.3
1/7 + 5	0.24	3.0	33.5	15.2	2.4	2.1	5.4
2/29 + 26	0.38	1.4	40.3	20.5	4.3	5.6	8.0
2018年6~7月測定							\mathbf{h}
<u>孤立バンチ</u> のバンチ電流値よりも <u>トレイン部</u> のバンチ電流値に影響されていることが分かる。						蓄積リングのCODの 乱れも疑われる!?	

■ 3. 影響が生じる原因と対処法 原因の直感的解釈 とその検証データ

影響がみられた主な原因として、検出素子受光部での 光電子放出の際の空間電荷効果の影響が強く疑われた。

光電子収集電極の印加電圧 (通常 HV = +100 V) を変化させて

その影響の原因を検証した。(右図参照)

そこで、

multi bunch と 2/29+26 で比較

3. 影響が生じる原因と対処法 検証データ(光電子収集電極の印加電圧に対する応答)

検証実験: 挿入光源のギャップ(ID gap)を広げて測定

参考データ: BM-BL用XBPM

以上のことから、従来の XBPM に対して 対症療法として、

- 印加電圧を HV = +500V (すべての XBPM)
- ・定点観測 ID gapを広めに設定(影響が大きかった BL のみ)

■ 3. 蓄積リングのフィリング変更が与える影響 対象療法の評価結果

Before (2018年6~7月) After (2019年7月~2020年 5月) 0.10 0.10 11/29+1 × 203 \diamond 11 x 29 11 x 29 ٠ 1/7 + 5 o 1/7 + 50 0.05 0.05 2/29+26 2/29+26 o Vertical deviation (mm) Vertical deviation (mm) 0.00 0.00 O, ο, -0.05 -0.05 -0.10 -0.10 -0.10 -0.05 0.00 0.05 0.10 -0.10 -0.05 0.00 0.05 0.10 Horizontal deviation (mm) Horizontal deviation (mm) 主な対処: 1. 印加電圧 HV = +100V → +500V 2. ID gap を広げる

フィリング・パターン毎のバンチ電流値と XBPMへの影響の程度(RMS値)

Filling	Bunch train	Isolated bunch	ID-BL (µm RMS) before		ID-BL (µm RMS) <mark>after</mark>		BM-BL (µm RMS)
pattern	(mA/bunch)	(mA/bunch)	Horizontal	Vertical	Horizontal	Vertical	Vertical
Multi	0.05	—	3.6	2.0			1.3
11/29 + 1	0.10	5.0	13.9	5.8			3.0
203	—	0.5	17.6	12.6			6.0
11 x 29	0.31	—	27.7	14.6	2.7	2.0	4.3→2.2 2020年3月
1/7 + 5	0.24	3.0	33.5	15.2	2.4	2.1	5.4→2.7 2020年5月
2/29 + 26	0.38	1.4	40.3	20.5	4.3	5.6	8.0→6.0 2019年7月
2018年6~7月 2019年~2020年							
従来型のXBPMで 1/10 程度に抑えた。							時か経っと

前述の対症療法的な対策(光電子収集電極の印加電圧を高くするだけでなく、ID gap も広げることが必要)では、 XBPMの適用範囲が狭められることになる。

そこで、

新しく XBPM検出部を設計・製作することで、検出素子の 光電面における 空間電荷効果 の問題を解決することを試みた。

■ 4. 傾斜配置型XBPM ブレード型検出素子の構造

新設計のポイント: 空間電荷効果を軽減するために、ブレード検出素子と光電子収集電極との間に<u>高い電界</u>を生じさせる。

■ 4. 傾斜配置型XBPM 全体の構造

マルチバンチ (160 x 12)

セベラルバンチ (11/29 + 1)

セベラルバンチ (2/29 + 26)

マルチバンチであれば、IDの最小gap (8.1 mm)でも空間電荷効果の影響が抑えられている。 セベラルバンチでは、印加電圧を +500V とすれば、空間電荷効果の影響が抑えられている。

- 4枚のブレード信号の平均値をプロット
- ・傾斜配置: "Multi" "11/29+1" "2/29+26"
 平行配置: "2/29+26" parallel (従来型)
- ・ 縦軸を対数軸
- ・ 低電圧部(HV≦200V)の立ち上がり

<u>プラトー領域の下限値電圧</u>

- 1. 影響が大きいフィリングほど高くなる。
- 2. ID gap を閉めて電流信号が大きくなるほど高くなる。
- 3. 平行配置では、明確なプラトー領域がない。

結論として:

<u>傾斜配置型XBPM</u>は、

従来型の<mark>平行配置型</mark>XBPM と比べると明らかに

フィリングの影響軽減に大きな効果があることを示唆する。

"2/29 + 26" (最も影響が出やすい) での XBPMの読み値 をマルチバンチ (基準) と比較した

Cond	lition	マルチバンチ(基準)と比較 Deference of readouts			
ID gap (mm)	XBPM HV (V)	Dx (µm)	Dy (µm)		
12.0	100	4.5	1.0		
「こし (定点観測 gap)	500	-1.5	1.0		
0 1	100	-5.0	-1.5		
0.1 (最小 ID gap)	500	0.0	{ 1.0		
		(3.4 µm RMS)	(1.1 μm RMS)		

<u>結論:フィリング・パターンを変更した時の影響が十分小さくなっている。</u>

傾斜配置型XBPM を使用することで、最も影響が出やすい "2/29 + 26" で、最小 ID gap (8.1 mm)でも 光電子収集電極の印加電圧を +500V とすれば、空間電荷効果の<u>影響が抑えられる</u>。 蓄積リングのフィリング変更が与える影響 結果のまとめ (3)

SPring 8

はじめに

- 従来のXBPM (ID-BL用、BM-BL用)の役割、原理、構造
- ブレード型検出素子、光電子放出型、光電子収集電極(従来は HV = +100 V)

フィリング変更が与える影響・原因・対処法

- 影響を受ける度合いを定量化(最大水平40µm、鉛直20µm程度)
- 原因の特定(空間電荷効果)
- 光電子収集電極の印加電圧に対する出力電流信号の応答から判定
- 対症療法として、<u>印加電圧を HV = +500V</u>、定点観測 ID gapを広めに設定
- 影響の度合いは <u>1/10 程度に軽減</u>

<u>傾斜配置型 XBPM</u>の設計・実証試験

- 検出素子を"ハ"の字型に配置(高い電界の発生 → 空間電荷効果の抑制を期待)
- 端部を円弧状に成形(熱負荷の軽減)
- 印加電圧に対する出力電流信号の応答試験 → 結果良好
- 影響の度合い (XBPMの読み値の偏差) は水平 0.0 μm、鉛直 1.0 μm を実証

<今後の方針>

- 今後の新規製作は、傾斜配置型XBPM を基本に検討する
- 現在使用中のXBPM(平行配置型)は <u>光電子収集電極の 印加電圧</u> や <u>定点観測 ID gap</u> を 適切に設定した上で運用を続ける