PASJ2020 FRPP10

量子メスに向けた高エネルギービーム輸送系及び回転ガントリーの光学設計 OPTICS DESIGN OF HIGH ENERGY BEAM TRANSPORT AND ROTATING-GANTRY FOR QUANTUM SCALPEL

阿部康志 ^{*A)}、岩田佳之 ^{A)}、水島康太 ^{A)}、浦田昌身 ^{A)}、野田悦夫 ^{A)}、白井敏之 ^{A)}、藤本哲也 ^{B)} Yasushi Abe^{*A)}, Yoshiyuki Iwata^{A)}, Kota Mizushima^{A)}, Masami Urata^{A)}, Etsuo Noda^{A)}, Toshiyuki Shirai^{A)}, Tetsuya Fujimoto^{B)} ^{A)}National Institutes for Quantum and Radiological Science and Technology (QST)

^{B)}Accelerator Engineering Corporation (AEC)

Abstract

A facility for heavy-ion radiotherapy is very large and the introduction cost is also high. National Institutes for Quantum and radiological Science and Technology (QST) has developing a next generation facility for heavy-ion radiotherapy, it is called quantum scalpel. The cost and size of devices are reduced by downsizing a synchrotron using superconducting technology and an injector using laser-accelerated technology. To realize the quantum scalpel, however, a short highenergy beam transport system (HEBT) and a compact superconducting rorating-gantry are needed as well. In this study, we designed the optics of HEBT and the rotating-gantry for quantum scalpel. Optical conditions at an isocenter must be matched for all beam energy used in heavy-ion therapy. We designed the optics of HEBT and the rotating-gantry in case of two energy conditions (430 MeV/u and 56 MeV/u), and device layout to reduce a footprint. We report results of the optics design of HEBT and the rorating-gantry for the quantum scalpel.

1. はじめに

放射線医学総合研究所 (NIRS)の HIMAC における炭 素線がん治療は 1994 年に開始され、延べ 12000 人を超 える患者の治療を行ってきた。これまでの治療実績によ り骨軟部や前立腺がんなどが保険適用となり、また治療 期間の短縮化による生活の質 (QOL) の向上に貢献して きている。現在、重粒子線がん治療施設は国内外に拡が りつつあるが、普及型と呼ばれる加速器群の装置は専用 の建屋を要してしまうため、設置可能な広大な敷地が必 要となるとともに、コストも巨大なものとなり、さらな る普及の妨げとなってしまっている。量子科学技術研究 開発機構 (QST) では、装置全体の小型化を目指すととも に、さらに高度な治療が可能な重粒子線治療装置「量子 メス」(Fig. 1)の研究開発をスタートさせた。量子メスで は主にシンクロトロンを超伝導技術により小型化し [1]、 レーザー駆動イオン加速技術 [2] を用いることで入射器 を小型化することで、小型陽子線治療装置並みのサイズ である 20 m × 10 m に収めることを目標としている。

現在、炭素線の治療に使用されているシンクロトロン のサイズは直径が約 20 m、周長で約 63 m あるが、超伝 導を用いた小型シンクロトロンでは直径は約 8 m、周長 は約 28 m となり、面積比では 1/4 以下の大きさとなる 計画である。このシンクロトロンの小型化に伴い、治療 施設の敷地面積の縮小化を目指し、本研究では付随する ビーム輸送系の縮小化について光学設計を行ったのでそ の成果について報告する。

2. ビーム輸送系の設計について

回転ガントリーを用いた粒子線治療においては、アイ ソセンターにおけるビームプロファイルがガントリー角 度に依らず常に同じになることが求められる。そのため

Figure 1: Schematic view of the quantum scalpel (5th generation). It consists of a laser-driven injector, a compact synchtroton and a rotating-gantry with superconducting magnets.

には回転ガントリーの入口部分において水平方向と垂直 方向の光学的なパラメータを一致させる必要があり、水 平方向と垂直方向の対称性を高エネルギービーム輸送 系の光学系にて実現する必要がある。さらに回転ガント リーの光学設計と併せて、治療に要求されるビーム条件 (大きさ・形状・収束・発散など)が得られるように、各 光学要素を設計しなければならない。本研究では光学的 な条件だけでなく、装置面積の縮小化が重要であるため、 実際の機器レイアウト検討についても並行して行い、よ り小面積の占有となるビーム輸送系の設計を行った。光 学計算は治療で用いられる最大及び最小エネルギーに相 当する 430 MeV/u と 56 MeV/u の 2 種類のエネルギー について行った。磁石の磁場仕様は最大エネルギーに て決定することし、両エネルギーにおいて要求するパラ メータが得られるように機器設計を行った。光学計算に は MAD8 [3] 及び WinAgile [4] を用いて行った。

3. 高エネルギービーム輸送系の光学設計

高エネルギービーム輸送系 (HEBT) はシンクロトロン の取出し (セプタム電磁石) から回転ガントリーの入口

^{*} abe.yasushi@qst.go.jp

までの輸送系を示す。粒子線治療施設において、HEBT は敷地面積を大きくする要因の一つとなってしまってい る。それは治療位置であるアイソセンタ - で要求される ビーム形状等を正確に調整しなければならず、調整用の 機器数の増加や治療室の数に対応してビームライン数も 増えることにより面積が肥大化する。さらに加速器の設 置位置と治療室の位置、病院施設との位置関係にも左右 されてしまうため、それぞれの関係性も踏まえて設計を 進めなければ短縮化が難しいと考えられる。そのような 中で HEBT の敷地面積を小さくするためには、光学条件 に対して必要最低限の機器を設置することが望ましい。 最近では回転ガントリーと併せて光学設計を行い、いく つかの光学パラメータについては治療に影響が出ない範 囲で小さくするといったことによりビームラインの短縮 化を図る例もある [5]。

本研究では治療高度化の観点からアイソセンターに おける光学条件については、回転ガントリーを用いる ことを前提とし、理想的な条件を満たすように設計する こととした。まず HEBT においては、 $\beta_x = \beta_y = 18$, $\alpha_{\rm x} = \alpha_{\rm y} = 0, D_{\rm x} = D_{\rm y} = 0, D'_{\rm x} = D'_{\rm y} = 0$ の条件を満 たすように機器を設置することとした。βの大きさにつ いてはこの限りではなく、回転ガントリーにおける調整 の自由度に依存して調整することも可能であるが、今回 はパラメータサーチの結果18mとすることした。さら にシンクロトロンからの取出し時の角度がずれてしまい アイソセンターで位置のずれが生じることがあるが、こ れはシンクロトロンの取出し位置からアイソセンターへ のフェイズアドバンス (μ_x)が $n \times \pi(n$ は整数) とするこ とで影響を無くすことが可能である。そのため、フェイ ズアドバンスについても光学条件に含めて検討すること した。また通常シンクロトロンにおいては、垂直方向の ディスパージョンとその勾配はともに0であるため、パ ラメータ数から求められる四重極電磁石 (QM) について は最低6台となる。さらに水平方向のディスパージョン を0にするためには偏向電磁石 (BM) が少なくとも1台 が必要となる。HEBT の設計においては上記のパラメー タを拘束条件として、各 OM のパラメータを決定した。 BM の仕様としては常伝導電磁石を用いることとし、曲 率半径は既存の電磁石と同一の 4.3 m とし、最大中心磁 場は 1.54 T である。また QM についても常伝導電磁石 とし、ボア半径は既存の電磁石と同一の 31 mm、最大磁 場勾配は 24.5 T/m とした。こちらについては既存の電 磁石より大きな値となっており、磁石構造の再設計が必 要となるが、2D モデル計算では実現可能な値である。

これらの条件を踏まえた光学計算により得られたベー タファンクション及びディスパージョンのエンベロープ を Fig. 2 に示した。また 56 MeV/u 時にエミッタンスが 最大となり、シミュレーションからおよそ 1π mm mrad と想定されるので、その時のビームサイズエンベロープ を Fig. 3 に示した。このビームサイズからビームパイ プや磁石の口径は 30 mm 程度でも十分であることがわ かった。BM については、光学条件だけでなく、シンク ロトロンの配置や想定される回転ガントリーの配置の都 合上、2 台用いることした。これによりビームラインの 長さは約 14.8 m 程度 (セプタム出口からは約 13.5m) と なり、従来の HEBT と比べ、占有面積を小さくすること ができた。しかしながら、フェイズアドバンスについて は水平・垂直において完全対称とはならず、回転ガント リー部分を含めて調整することとした。

Figure 2: (a) Horizontal and vertical β -functions in case of 430 MeV/u. (b) Horizontal and vertical dispersion function in case of 430 MeV/u.

Figure 3: Horizontal and vertical beam envelopes. Vertical axis shows 2σ beam size. In the calculations, typical emittances (1σ) of 1 π mm·mrad are assumed.

4. 回転ガントリーの光学設計

回転ガントリーは患者への負担が小さく、360度のあ らゆる角度から照射が可能となる画期的なシステムで ある。重粒子線治療においては陽子線と比べると磁気剛 性が大きいために、非常に巨大な装置となっていた [6]。 2012年には放医研において機能結合型の超伝導電磁石 を用いた回転ガントリーの開発に成功しており [7]、す でに回転ガントリーを用いた炭素線による治療運用も開 始されている。さらに超伝導電磁石を用いた回転ガント リーの普及も進められており、国内では山形大学、国外 では韓国の延世大学でも運用が予定されており、重粒子 線治療における回転ガントリーを用いた治療はさらなる

PASJ2020 FRPP10

普及が期待される。量子メスに向けた超伝導ガントリー システムはさらなる小型化を目指し、さらなる普及への 貢献が期待されている。

本研究において回転ガントリーに採用する電磁石は機 能結合型の超伝導電磁石であり、90度の偏向電磁石(45 度×2台)を3台組み合わせる形とし、コスト削減を目 指している。電磁石及び回転ガントリーのサイズに関し ては最大磁場に依存して小さくすることが可能である が、現状ではシンクロトロンの仕様に合わせ中心磁場は 3.5 T とした。Figure 4 に示すように、四重極成分につ いては 35 度分と 45 度分の組み合わせとなっており、そ れぞれの極性は異なる仕様とした。光学条件としてはア イソセンターにおいて、 $\beta_x = \beta_y = 1.0, \alpha_x = \alpha_y = 0,$ $D_{\rm x} = D_{\rm y} = 0, D_{\rm x}' = D_{\rm y}' = 0$ となるように設計を行っ た。1台の超伝導偏向電磁石の中には2種類の四重極効 果があることになるので、偏向電磁石部分で6パラメー タとなるが、フェイズアドバンスも含めたパラメータ調 整のために常伝導の QM も 3 台追加することとした。こ の QM の最大磁場仕様は HEBT と同一としており、磁 極長のみ変更している。

Figure 4: Schematic design of a superconducting magnet for the rotating-gantry.

回転ガントリー部分についての光学計算から得られ たベータファンクション及びディスパージョンのエンベ ロープを Fig. 5 に示し、ビームエンベロープを Fig. 6 に 示した。この計算結果は回転角が 90 度の場合について 示している。回転ガントリー内でのビームサイズも十分 小さく、比較的小口径の超伝導電磁石の仕様で製作が可 能であると考えられる。 さらにアイソセンターにおける ビーム分布やサイズを確認するために、シンクロトロン のシミュレーションから得られた粒子分布を用いて輸送 計算を行った。430 MeV/u における計算結果を Fig. 7 に 示した。計算にはビームモニターやポートカバーなどで の散乱も考慮しており、水平・垂直でほぼ対称の分布を していることが確認できた。

これらの計算結果からシンクロトロンと HEBT 及び 回転ガントリーの配置を考慮した結果、Fig. 8 に示すよ うな配置が最適となった。その結果、装置面積は 25 m × 15 m 程度に抑えることができた。このモデルは量子 メスの第 5 世代の前段階に位置づけられる第 4 世代の重 粒子線治療施設の運用が期待される。

Figure 5: (a) Horizontal and vertical β -functions in case of 430 MeV/u. (b) Horizontal and vertical dispersion function in case of 430 MeV/u.

Figure 6: Horizontal and vertical beam envelopes. The conditions are same as HEBT.

Figure 7: Spot shape and particle distribution at the isocenter. A scattering effect in the irradiation system is considered in this simulation.

PASJ2020 FRPP10

Figure 8: Schematic layout of the quantum scalpel (4th generation). An ion-source and an injector are omitted in this figure.

5. まとめ

量子科学技術研究開発機構ではさらなる粒子線がん治 療施設を普及させるために、量子メスプロジェクトを進 めており、超伝導技術やレーザー駆動イオン加速技術に より施設面積の縮小化を目指している。本研究ではシン クロトロンを常伝導電磁石から超伝導電磁石に置き換え た第4世代の治療装置における高エネルギービーム輸送 系と回転ガントリーの光学設計を行った。高エネルギー ビームラインは常伝導の偏向電磁石2台と四重極電磁石 6台で構成し、ビームラインの短縮化を図ることができ た。また回転ガントリーについては、同一の90度偏向 の超伝導電磁石3台による構成とすることでコストの 削減及びコンパクトな形状なった。光学計算からは重粒 子線治療において実用可能な設計が得られ、粒子輸送計 算からも想定するようなビーム形状が得られることがわ かった。

今後はビームモニター等のビームラインに必要なその 他の機器の配置や仕様の検討を進める予定である。さら に HEBT に用いる電磁石設計や回転ガントリーの超伝 導電磁石の磁場設計、冷凍機を減らすための超伝導線材 の改良等についても開発を進める予定である。

参考文献

- [1] K. Mizushima et al., proceedings of PASJ2017, WEP131.
- [2] E. Noda et al., proceedings of PASJ2018, THP126.
- [3] H. Grote, MAD Program, CERN/SL/90-13.
- [4] P. J. Bryant., "AGILE, A TOOL FOR INTERACTIVE LAT-TICE DESIGN", in Proceedings of EPAC, 2000.
- [5] F. Ebina et al., proceedings of PASJ2017, WEP137.
- [6] H. Eickhoff *et al.*, in Proceedings of the 8th European Particle Accelerator Conference, Paris, 2002 (EPS-IGA and CERN, Geneva, 2002), pp. 2730.
- [7] Y. Iwata *et al.*, "Design of a superconducting rotating gantry for heavy-ion therapy", Phys. Rev. ST AB 15 (2012) 044701.