SACLAからSPring-8蓄積リングへのビーム入射のためのタイミング同期システム

- 概要
- 同期方法
 - ・ 従来の方法
 - Li マスタトリガの調整
 - 残留誤差の抑制
- ・実運用に向けて
 - SR基準RF周波数変化への対応
 - 入射アドレスの制御
- 試験結果
 - 同期精度
 - 入射試験
- ・まとめ

大島隆AB、細田直康AB、前坂比呂和A、岩井瑛人A 森本理C, 田尻泰之C、岡田謙介B

A理化学研究所 放射光科学研究センター B高輝度光科学研究センター Cスプリングエイトサービス

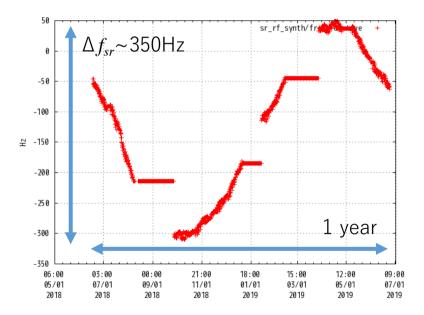
SACLAとは SRとは

SACLA: SPring-8 Angstrom Compact free electron LAser

- SACLA: X線自由電子レーザー施設
 - 高ピークパワー超短パルス幅高輝度のX線を供給
 - 電子ビームのエネルギー 4~8GeV:線形加速器からのビームを1passで使用
 - 繰り返し 60pps
 - ビームライン 3本 (8GeVはBL2,3BL1は500MeV専用加速器有り)
 - BL3とBL2で均等振り分け運転(それぞれのBLに30pps)を実施中
- SR: 大型放射光施設
 - 平均パワーの高い高輝度のX線を供給
 - 電子ビームのエネルギー 8GeV:電子ビームを蓄積して周回させて使用
 - 蓄積電流 100mA (0mAからの積み上げ~20分)
 - トップアップ運転 99.5mA以下で再入射し電流を維持(~5分毎)
 - ビームライン 62本

・同期システム開発の目的

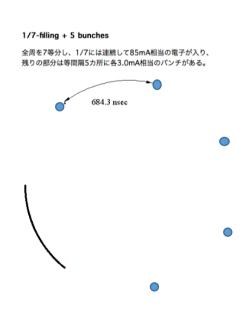
- 蓄積リング(SR)のアップグレード計画:
 - 新リングは低エミッタンス
 - →入射ビームに対しても低いエミッタンスが求められる
 - →現行の入射器では不十分→XFEL施設SACLAの線形加速器(Li)のビームの利用
 - この計画の準備段階としてSACLAからのビームをSRに入射 2020年から運用めざす
- 老朽化した既存入射器と交代 → 維持費節約

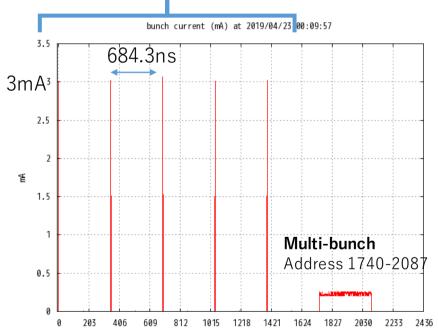

• 要求事項


- 同期精度
 - 6ps-rms ←新リングのバンチ長
- ・モード
 - 積み上げ:0mAからの積み上げ入射を20分程度で完了
 - トップアップ:100mAの蓄積電流を維持
- SACLAのXFEL運転を妨げない
 - 60ppsのビームのうち、SR入射のショットのみ外乱(タイミング調整)を許容
 - 外乱はXFEL実験で使用する同期レーザーのPLLロック外れを起こさない範囲に抑制

• 要求事項

- SR基準RF周波数**f**_{sr}への追従
 - 潮汐や地中温度変化などの影響でリング周長が変化する
 - 周長の変化→エネルギーの変化→エネルギーを一定にするためを f_{sr} を調整


SR周波数のトレンドの例


第16回日本加速器学会年会 2019.08.01京都 THOI04 大島

- 要求事項
 - フィリングへの対応
 - SPring-8では時分割の実験ユーザーの為に複数種類のフィリングが使われている 高いバンチ純度が必要なため、ずれたアドレスにビームが入ることが許されない。
 - 例 1/7-filling+5bunches

Several bunches

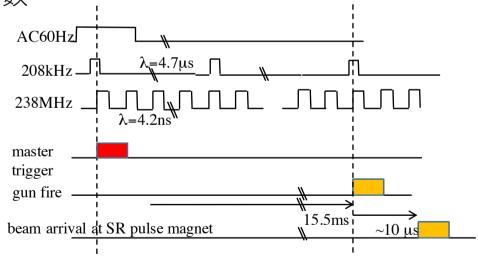
Address 0, 348, 696, 1044, 1392

同期方法

- Liの励振パルス信号をSRクロックから作る
 - 現行の入射器のLiは この方法を採用
 - 508.58MHz/359*63 *32=2856*(1-6.5E-6) MHz、 ~280usのパルス基準信号
 - ・ 位相雑音が増加
 - SRの周波数変化の影響を受ける → XFEL 性能に影響

新しい同期方法を検討した

同期方法 (マスタトリガの調整)


- Li マスタトリガ
 - Liのタイミング基準、15.5ms後にビームが出射、 SHB空洞の周波数238MHzに同期
 - このトリガタイミングを調整して同期をとる
- SR バケットタイミング

• **f**_{rev}=RF基準信号508.58MHz/ハーモニクス数

2436 = 208kHzと同期

• Liの繰り返しAC60Hzを**f**_{rev}で叩き直し

→ 4.2ns以下の誤差

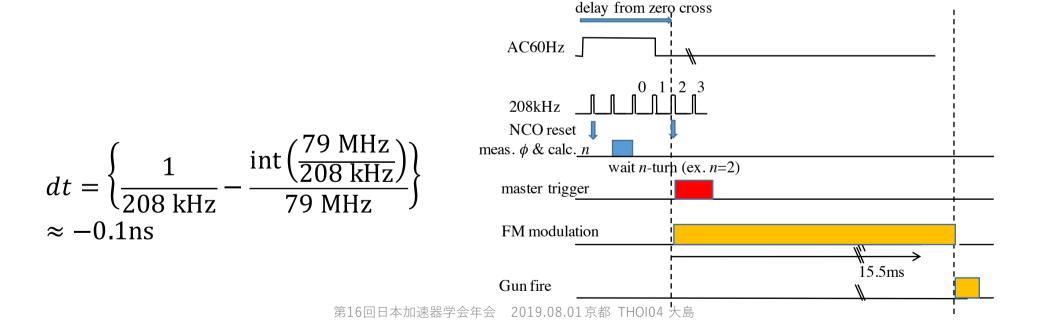
同期方法 (残留誤差の抑制)

- 2つの信号の時間差の計測方法
 - オシロスコープ:リアルタイムの計測不可
 - TDC: 単発の測定を高くしにくい ショット内で複数回の計測不可
 - 基準となるクロックの位相差の計測 ← これを採用
- 位相差の計測
 - **f**_{sr}=508.58MHz/6 と **f**_{Li}=238MHz/3 との差周波の信号を検出
 - **f**_{Li}信号を **f**_{sr}のクロックで動作するADCで検出(**D**igital **D**own **C**onversion)
 - f_i のクロックで動作するNumerical Controlled Oscillator (NCO) と比較
- 残ったタイミング誤差をSACLAのmaster oscillatorへのFM変調で補正

$$f_{Sr} / 6$$

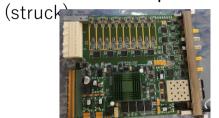
$$f_{Sr} / 6$$

$$f_{Li} / 3$$

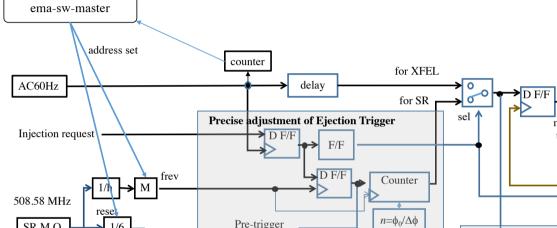

$$f_{SR} + 2\pi k + \phi$$

$$f_{SR} / 3$$

$$f_{SR} /$$

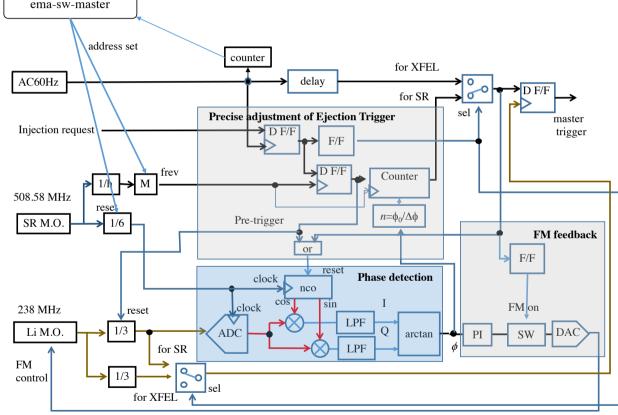

同期方法(マスタトリガの微調整)

- 予備実験の結果
 - 4.2ns分のFM変調振幅
 - 同期レーザのPLLロック外れ
 - → 初期のタイミング偏差を小さくする必要がある
- LiとSRのタイミングは SRの1revolution待つと -100ps変化する
- 最大4.2nsだった偏差は 最大42ターン待つことで0.1ns以下の偏差に小さくなる



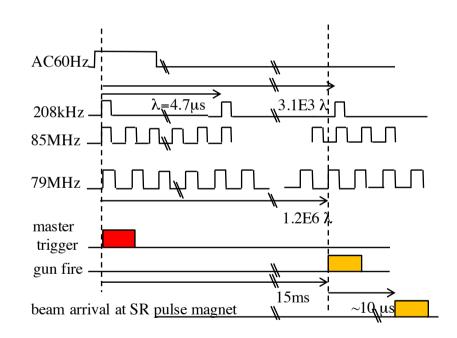
同期方法 (MTCA.4規格モジュールに実装)

• 16bit 125Msps digitizer AMC



- 同期ファームウエア(三菱電機特機)
 - DigitizerのFPGAに機能を搭載
- 信号処理回路 RTM (candox)

第16回日本加速器学会年会 2019.08.01京都 THOI04 大島


実運用に向けて (SR基準RF周波数変化への対応)

- SR基準RF周波数 f_{sr}は潮汐や地中温度変化などの影響で変化する
- **f**_{sr}の変化の与える影響
 - **f**_{nco}の変化
 - 15.5ms後のタイミングの変化
 - 15.5msは固定 = 3/238MHz * 1.2E6
 - 15.5ms後のfrevのタイミングはずれる = 1/508.58MHz * 7.9E6
- 補正
 - 周波数カウンタで計測した f_{sr} を元に f_{nco} を補正

$$\Delta f_{nco} = \frac{\Delta f_{sr}}{6} - \frac{f_{nco} \times \Delta f_{sr}}{f_{sr}} \approx 0.156 * \Delta f_{sr}$$

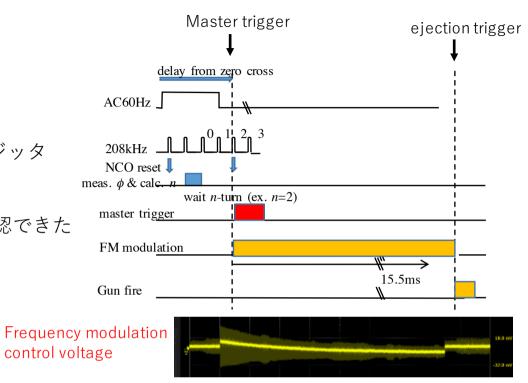
• FM変調の目標値を補正

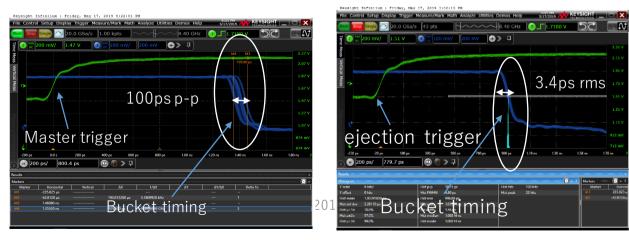
$$\Delta t = 15.5 \text{ms} \times \frac{\Delta f_{sr}}{f_{sr}} \approx 30.5 \text{ ps/Hz}$$

実運用に向けて(入射アドレスの制御)

- SACLAでのルートの制御
 - ソフトウエアベース
 - 60shot単位でルート (BL3, BL2, XSBT) を制御
 - 詳細は 前坂氏 「X線自由電子レーザーの多様な運転とSPring-8入射 に向けたSACLAのオンデマンドビームルート・パラメータ切り替えシステムの開発」 参照

テーブルの例: 1/7 + 5bunches

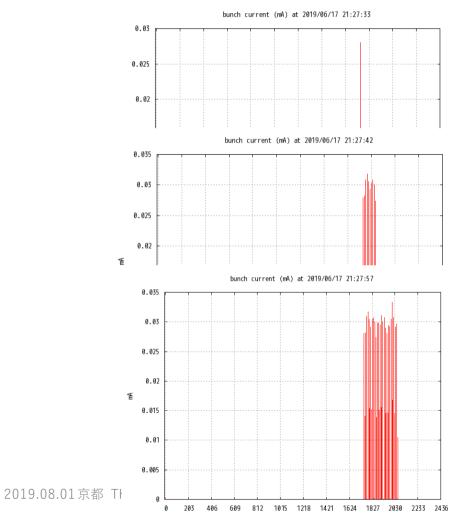

- 積み上げ入射:10shot/秒
 - アドレスを10shot分記載した複数の**入射テーブル**を準備
 - 入射テーブルのindexを同期回路に順次設定
- トップアップ入射:1shot/秒
 - 目標電流から差の大きなアドレス#を求める
 - アドレス#を1shot分記載した**入射テーブル**を設定


shot	#1 several	#2 multi-1	#3 multi-2	
0	0	1740	1750	
1	348	1741	1751	
2	696	1742	1752	
3	1044	1743	1753	
4	1392	1744	1754	
5	0	1745	1755	
6	348	1746	1756	
7	696	1747	1757	
8	1044	1748	1758	
9	1392	1749	1759	

試験結果

タイミング同期 ejectionとbucketとのジッタ <3.4ps rms


要求値を満たすことが確認できた


試験結果

- Li-SRタイミング調整
 - FM変調設定値の粗調整で入射効率が大きく変化

• アドレス制御

• 狙ったバケットに入射できた

まとめ

- SACLAからSRへのビーム入射のための同期システムを開発
 - XFEL性能悪化させないSR入射を目指す
 - SACLAのmastertriggerの調整:100psp-pで同期
 - SACLAのmaster oscillatorへのFM変調
 4ps rms 以下 の同期性能を確認
 - 2019.01からXFEL運転を新システムで実施 → 問題なし

今後

- SR入射試験
 - 2018.10.15から8回実施済み
 - 狙ったアドレスへの入射OK、SR RFバケットとのタイミング調整OK、90%以上の入射効率、、
 - 性能向上
 - 1回/月程度の頻度での試験
 - XFELの短バンチ長と入射の長バンチ長の両立、10pps入射、、
- 2020年からの実運用を目指す