PASJ2019 FROI03

J-PARC MR でのウェイク場の時間構造の調査 THE INVESTIGATION ON THE TIME STRUCTURE OF THE WAKE FIELD AT THE J-PARC MR

小林愛音、外山毅、佐藤洋一、五十嵐進、吉井正人、杉山泰之

Aine Kobayashi*, Takeshi Toyama, Yoichi Sato, Susumu Igarashi, Masahito Yoshii, Yasuyuki Sugiyama KEK/J-PARC

Abstract

For higher beam power, evaluating the impedance with multi-bunch is necessary at the J-PARC MR. The imaginary part of the impedance, the betatron tune shifts induced by the space charge effects were estimated and the quantitative evaluation is on-going. Understanding on the dependence of the bunch distant is one of the keys to impedance model reconstruction. The investigation on the time structure of the wake field is discussed in this report.

1. はじめに

大強度陽子加速器施設 (J-PARC) の主リング (MR) ではビームロスの削減が大強度化に必要である。マ ルチバンチでのベータトロンチューンシフトの振る 舞いに着目し、シフト量を補正することで、ビーム ロスを抑えビーム強度を上げることができた。大強 度ビーム加速に影響するインピーダンスの理解のた め、マルチバンチでの強度・バンチ数・バンチング ファクター依存性を測定した。定性的には、MR の 主要横方向インピーダンス源 [1] である空間電荷効 果 [2,3] と抵抗性壁効果 [4,5] をもとにしたモデルで 現象の理解はできているが [6]、定量的理解と評価の ために、多粒子モデルシミュレーションによるイン ピーダンス源の評価を進めている。

2. MRのチューンシフト

MR はハーモニック数9で、8 バンチまで入れるこ とができる。モデルと実際の条件との違いの一つと して、理論式ではバンチ間隔が均等であることが仮 定されている。バンチの分布が変わるとチューンシ フトの傾きが変わるのかを調べた。Figure1に示すよ うに3バンチを用いて詰めるパターンを均等または 連続と変えてチューンシフトを測定すると傾きが異 なることを観測した [7]。モデルとの比較のため均等 に詰めた条件で行った(Fig. 2 (a)、(b))。Model L は Laslett の式 [2,3] から、Model S と C はそれぞれは抵 抗性壁効果 [4,5] の式を元に作った。ここで、MR の 周長35%を占める偏向電磁石のダクト断面の形状 は楕円形、残りは円形と近似した。ダクトの材質は ステンレススチールである。さらに仮に9バンチ詰 めた場合の傾きを Fig. 3 から外挿して求めモデルと 比較した (Fig. 2(c)、(d))。

3. ウェイク場の減衰

次章で述べるシミュレーションの準備として、ウェ イク場がどれくらいで減衰するかを見積もる必要が

Figure 1: Tune shift slopes for two filling patterns in the horizontal (a) and vertical (b) planes.

ある。

ウェイク場の減衰を調べるための実験を行なっ た。RCS から MR に入射される 2 バンチの前後をバ ンチあたりの粒子数を変える操作 [8] を行いそれぞ れのバンチの強度の比を 16:1 にした。強度の大きい バンチを source、小さいバンチを witness と呼ぶこと にし、witness は source からのウェイク場の影響を受 けるとする。強度の比は逆にすることもできるため、 Fig. 4 に表すように witness から見た source までの距 離を 1 バケット分、または 8 バケット分とできる。 Figure 5(a) に典型的な信号を示す。測定器 iGp12 [9] を用いて測定した。1 turn を 576 スライスして波形

^{*} aine.kobayashi@kek.jp

Proceedings of the 16th Annual Meeting of Particle Accelerator Society of Japan July 31 - August 3, 2019, Kyoto, Japan

PASJ2019 FROI03

Figure 2: Measured (dots) and modeled (lines) tune shifts for three equidistant bunches in the horizontal (a) and vertical (b) planes. The extrapolation from measured (dashed) and modeled (solid) tune shifts for nine equidistant bunches in the horizontal (c) and vertical (d) planes. Model L represents the model based on space charge effects. Models S and C are resistive wall effects based on Shobuda *et al.* and Chao *et al.*, respectively.

Figure 3: Measured tune shift slopes as a function of the number of bunches with fitted lines. The sign of the tune shift slope for horizontal and vertical planes were opposite.

を記録しており、1 バンチ分は 64 スライスある。そ れぞれのスライス毎に、Blackman-Harris 窓関数を適 用し fast Fourier transform (FFT) を行い、バンチ毎の チューンを求めた(Fig. 5(b))。Source からの witness の差が tune shift である。

ここで、主要インピーダンス源である抵抗性壁効 果を用いて時間変化の減衰を考える。実測に近く表 現している理論 [5] の Eq. (21) を用いた。この式で今 n = 0 の 1 バンチのときを考えれば良いので、横方 向ウェイク場は、

$$W_{\perp}(s) = 2\frac{cZ_0\rho_0}{\pi b^2 d} \cdot \vartheta_2(0, e^{-\alpha s}) \cdot D_{\perp}$$
(1)

と楕円テータ関数 ϑ_2 で表すことができる。c は光速、 Z_0 は真空中のインピーダンス 376.7 Ω 、 ρ はダクトの 材質の伝導率である。 $\alpha = \pi^2 \rho_0/d^2$ とした。 D_{\perp} は元 の論文 [5] の Eq. (17) にある source particle と witness

Figure 4: The schematic view of the experimental condition with two different distances between source and witness bunches.

Figure 5: Typical row signal measured with iGp12 (a) and tune spectra for each bunches (b).

particle が dipole ウェイクと quadrupole ウェイクから 受ける力の項であり、これは実質チューンシフトに 関連している。

この Eq. (1) と、実際の測定(Fig. 4) で得たチュー ンシフト量との比較が Fig. 6 である。係数は考察中 だが、傾向が説明できることがわかる。

したがって、Eq. (1) より、ウェイク場がどれくらい で減衰するかを見積もることができる。Equation (1) は Fig. 7 の青線で表されている。約 500 以下では $1/\sqrt{e^{-\alpha s}}$ 、離れると $e^{-\alpha s/4}$ でそれぞれ表すことがで きる。MR 1 周で 1567.5 m であり、例えば 0.1 % 以下 になるのは 4 周あれば十分であると見積もられる。 後の章で述べるシミュレーションでは 5 周と 10 周 で比較しほぼ変化はなかったため、定常状態になっ ていると考えられる。

Figure 6: Relative wake decay of the measurement and model. It is scaled to compare the tendency. The coefficients are under estimation.

Figure 7: The distance dependence of the wake function.

4. 多粒子モデルのシミュレーション

シミュレーションツールとして PyHEADTAIL [10] を用いた。抵抗性壁インピーダンスは今回は B. Yee-Rendon 氏が IW2D [11] で計算した結果を引用 した [12]。インピーダンスモデルは Fig. 8 に示す。本

Figure 8: Wake field of the elliptical chamber (a) and the round chamber (b). In the round chamber, the wakes in the x and y planes are the same value due to the symmetrical geometry.

研究に適用するために、マルチバンチの効果を入れ、 設定値を実際のビーム条件に近づけた。

Figure 9 は、single bunch での tune shift のシミュ レーション(破線)と測定(実線)の比較である。同 様に 3 バンチで、Fig. 1 に示したようなバンチの詰 め方の違いが見えるかのシミュレーションを行なっ た(Fig. 10)。概ね合っているが、定量的には考察中 である。また、垂直方向が特に合わないのでシミュ レーション条件の見直しを行う。

現在のところ、Fig. 11 に示すようにダクト断面毎 のチューンシフト (a) や、ウェイク場の種類毎 ((b) で は dipole wake 場による寄与)のチューンシフトが計 算できる。今後ウェイク場源の要素毎の評価を行い、 定量的なインピーダンスの導出の準備を進める。

Figure 9: Preliminary results of the tune shift simulation (dashed lines) and measurement (solid lines) with single bunch for horizontal (a) and vertical (b) planes. The blue and magenta dashed lines show the component of the dipole and quadrupole wake fields, respectively.

5. キッカーインピーダンス

他の MR の横インピーダンス源の候補として挙 げられているのはキッカーである。入射キッカー2 台、取り出しキッカー5 台ある。過去に測定され た FX キッカーのレゾナンス周波数はビームの周回 周波数の整数倍の中間に位置しているので、その 効果は小さい [13]。PyHEADTAIL によるシミュレー ションでチューンシフトは見られず、今後詳細を CST PARTICLE STUDIO [14] 等も用いて調べること にする。

6. まとめ

J-PARC MR の大強度ビーム加速に影響するイン ピーダンスを評価するために、マルチバンチのチュー ンシフトを測定しモデルと比較した。ウェイク場の PASJ2019 FROI03

Figure 10: Preliminary results of the tune shift simulation (dashed lines) and measurement (solid lines) with three bunches for horizontal (a) and vertical (b) planes. Two different bunch filling patterns, equidistant (red) and sequence (blue) are shown. The difference can be seen in the simulation, but it is under discussion. The previous 5 turns are enough for including the wake in the calculation, but figure (b) shows includes the result of previous 1 turn due to large discrepancy.

減衰を測定し、抵抗性壁効果の理論式と測定を比較 した。多粒子モデルシミュレーションを行い、ウェ イク場の寄与やバンチの分布による違いについて調 べた。理解と評価の準備を進めている。

さらにインピーダンスの実部であるインスタビリ ティーの測定とシミュレーションを行い、インピー ダンスの評価を進める。

謝辞

昨年の加速器学会の発表ではマルチバンチのチ ューンシフトは2バンチずつの測定であったが、陳 栄治氏の質問により1バンチ毎に測定すること、お よびウェイクの積み重ねの様子を考察する方法の助 言をいただいた。大見和史氏と菖蒲田義博氏からは これまでチューンシフトやウェイク場についての助 言をいただいた。田村文彦氏には、RFの操作や測 定についての助言をいただいた。Michael Schenk 氏、 Bruno Salvant 氏には PyHEADTAIL の使い方、特に マルチバンチとウェイク場長さの取り扱いについて

Figure 11: Preliminary results of the tune shift by the elliptical cross-section component (a) and the dipole wake component (b).

助言をいただいた。他にも、議論や実験に協力して いただいた関係者の皆様に大変感謝申し上げます。 本研究は JSPS 科研費 JP18H05537 の助成を得たもの です。

参考文献

- Y.H. Chin, "Impedance and Beam Instability Issues at J-PARC Rings", HB2008, Nashville, Aug 2008, WGA01, p.40; http://accelconf.web.cern.ch/AccelConf/ HB2008/papers/wga01.pdf
- [2] L.J. Laslett, "On intensity limitations imposed by transverse space-charge effects in circular particle accelerators", Proceedings of the 1963 Summer Study on Storage Rings, Accelerators and Experimentation at Super-High Energies, N.Y., BNL, 10 Jun. -19 Jul., 1963, pp. 324-367; http://lss.fnal.gov/conf/C630610/p324.pdf
- [3] B.Y. Ng, "Physics of Intensity Dependent Beam Instabilities", World Scientific Pub Co Inc, 2006.
- [4] A. Chao, S. Heifets, and B. Zotter, "Tune shifts of bunch trains due to resistive vacuum chambers without circular symmetry", Phys. Rev. A. B. 5, 111001, Nov. 2002; https://journals.aps.org/prab/abstract/10. 1103/PhysRevSTAB.5.111001
- [5] Y. Shobuda and K. Yokoya, "Resistive wall impedance and

tune shift for a chamber with a finite thickness", Phys. Rev. E **66**, 056501, Nov. 2003; https://journals.aps.org/pre/abstract/10.1103/PhysRevE.66.056501

- [6] A. Kobayashi *et al.*, "Bunch train tune shift study for higher beam power at J-PARC MR", Proceedings of the 15th Annual Meeting of Particle Accelerator Society of Japan, Nagaoka, Japan, Aug. 7-10, 2018, pp. 60-64; http://www. pasj.jp
- [7] A. Kobayashi *et al.*, "Studies on coherent multi-bunch tune shifts with different bunch spacing at the J-PARC main ring", Proceedings of IPAC2019, Melbourne, Australia, 19-24 May. 2019, pp. 167-170; https://doi.org/10. 18429/JACoW-IPAC2019-MOPGW036
- [8] F. Tamura et al., "Development of the beam chopper timing system for multi-turn injection to the J-PARC RCS", Proceedings of PAC07, Albuquerque, New Mexico, USA, 2007.; https://ieeexplore.ieee.org/ document/4441171

- [9] Dimtel iGp12 homepage; https://www.dimtel.com/ products/igp12
- [10] E. Métral *et al.*, "Beam instabilities in Hadron Synchrotrons", IEEE Transactions on Nuclear Science, 63, 2, Apr. 2016, pp. 1001-1050.; https://ieeexplore.ieee. org/document/7445885
- [11] N. Mounet, "The LHC transverse coupled-bunch instability", PhD thesis, Ecole Polytechnique Federale de Lausanne, 2012.
- B. Y. Rendon *et al.*, "Updated model of the resistive wall impedance for the main ring of J-PARC", Proceedings of IPAC2018, Vancouver BC, Canada, 29 Apr. 4 May., 2018, pp. 3204-3206; https://doi.org/10.18429/JACoW-IPAC2018-THPAK002
- [13] T. Toyama, "Coupling impedance (ZL, ZT) measurements with the wire method", 2014, internal document.
- [14] CST-Computer Simulation Technology homepage; https: //www.cst.com/products/cstps