WEP045 粒子源 8月8日 大展示ホール 13:10 - 15:10 |
Feasibility of on-site nuclear material identification in Fukushima Daiichi fuel debris by X-band electron linac-based compact neutron source |
○Yudhitya Kusumawati, Yuki Mitsuya (The University of Tokyo), Tomooki Shiba (Japan Atomic Energy Agency), Mitsuru Uesaka (The University of Tokyo) |
Unaccountable nuclear fuel debris in reactor core area of Fukushima Daiichi became subject of safeguards and criticality safety, and mapping of nuclear debris activity through on-site screening is necessary to provide reliable data for debris removal plan. Screening activity consists of dual energy X-Ray CT and Neutron Resonance Transmission Analysis that complements each other, and the latter can identify isotopes in a material. By using compact pulsed neutron source constructed from 3.95 MeV X-Band electron linac, coupled with Tungsten as electron-to-photon converter and Beryllium as photon-to-neutron converter, short-distance neutron Time of Flight measurement can be performed. The measurement result of this system shows up to 100 eV neutron energy spectrum can be obtained from a 2.5-meter distance through Helium-3 neutron detector. Neutron resonance transmission experiment using Tungsten as dummy for Uranium shows that energy absorption in the resonance neutron area of Uranium-238 from 1-100 eV can be observed, as well as multiple elements detection. With its compact size and short Time of Flight path, this system can be implemented in on-site nuclear debris screening system. |