PASJ2017 TUOL08

SACLA 油密閉型モジュレータに用いる 50 kV 半導体スイッチの開発 DEVELOPMENT OF A 50 KV SOLID-STATE SWITCH FOR AN OIL-FILLED KLYSTRON MODULATOR IN SACLA

稲垣隆宏^{#, A)}, 近藤力^{A)}, 安積隆夫^{A)}, 大竹雄次^{A)}, 益田邦和^{B)}, 徳地明^{C)}, 天神薫^{C)}, 木田保雄^{C)} Takahiro Inagaki^{#, A)}, Chikara Kondo^{A)}, Takao Asaka^{A)}, Yuji Otake^{A)}, Kunikazu Masuda^{B)},

Akira Tokuchi^{C)}, Akira Tokuchi^{C)}, Kaoru Tenjin^{C)}, Yasuo Bokuda^{C)}

A) RIKEN SPring-8 Center

^{B)} SPring-8 Services Co. Ltd.,

^{C)} Pulsed Power Japan Laboratory Ltd.,

Abstract

In the X-ray free electron laser facility SACLA (Spring-8 Angstrom Compact free electron LAser), 79 klystron modulators are operated as high-power rf sources for an electron linac. Since the typical lifetime of a thyratron is short for about 4 years, its high-maintenance cost is serious problem. In order to overcome this problem, we have developed a solid-state high voltage switch having a long lifetime for thyratron replacement. The high-voltage switch device of our modulator should run at a 60 pps repetition rate and conducts a large current of 5 kA with a 5 µs pulse width from a pulse forming network circuit charged at 50 kV in maximum. We employ the static-induction (SI) thyristor as the high-voltage switch, because it has suitable characteristics for the thyratron replacement; a high off-state voltage, large pulse current capacity, a fast switching time, and a low conduction loss. In total, 192 SI-thyristors (24 series, 8 parallel) are used for a 50 kV switch module. Since our modulator is filled with an insulation-oil, water-cooling of the device is not so easy. Hence, we attach the SI-thyristors on aluminum heat sinks forcibly cooled by oil circulation. Performance check in high-voltage operation for the high-voltage switch was carried out by installing it in to the actual klystron modulator. The switch stably run at a 50 kV charging voltage, a 5 kA pulse current and a 60 pps repetition rate. A temperature rise of the SI-thyristor installed in the high-voltage switch is about 7 degree, which is low enough and corresponding to the acceptable power loss. Validity of employing the module for the high-voltage switching is well confirmed.

1. はじめに

X線自由電子レーザー施設 SACLA[1]では、クライス トロンの高電圧パルス電源として、出力 110 MW の油密 閉型モジュレータ[2]を 79 台使用している。Pulse Forming Network (PFN) 回路のコンデンサに最大 50 kV まで充電された電力を 60 pps の繰り返しで出力するため のスイッチ素子として、現在は水素ガスの放電を利用し たサイラトロンを用いている。このサイラトロンは、加速器 のなかで最も耐用寿命の短い機器であり、使用開始後2 年ほど経つと、カソードの劣化による導通不良やサージ の増大、内部の汚染による放電の頻発などの障害が発 生する。そして平均して3年から4年で使えなくなる。 SACLA では毎年15本から20本のサイラトロンを購入し ており、また毎月のように交換を行う必要があることが、 大きな問題となっている。[3] このような維持にかかる費 用や、加速器の運転を妨げるリスクを減らすため、長寿 命な半導体による高電圧スイッチを開発し、サイラトロン の代替として使用することを計画した。

サイラトロンの半導体化は、近年のパワー半導体素子 の進展と共に各国の加速器施設[4,5]やメーカー[6,7]で 開発が進められているテーマのひとつである。我々は、 耐電圧が高く、高速かつ大電流のスイッチングが可能な SI サイリスタをスイッチ素子とした阪大産研の半導体ス イッチ[4]を参考に、絶縁油密閉型の SACLA モジュレー

inagaki@spring8.or.jp

タにて使用できるものを開発した。阪大産研のスイッチは 定格電圧が25 kV でパルスの繰り返しも10 pps である。 これに対し SACLA では電圧が50 kV で繰り返しも60 pps であり、熱負荷が一桁大きい。従って、スイッチの構 成や冷却方法について、サイリスタ素子の実測性能をも とに再設計を行った。また、SACLAの小型モジュレー タ・タンク内で使用できるスペースは限られ、高さ800 mm、 幅700 mm以内におさめる必要があるため、絶縁油の優 れた絶縁性能を頼りに大幅な小型化を図った。こうして 完成した半導体スイッチを、モジュレータに接続して大 電力試験を行った。最大定格である50 kV、60 ppsの繰 り返しにて問題なく動作し、要求通りの性能を確認した。

本プロシーディングスでは、この半導体スイッチの設 計と構成、および大電力試験の結果について報告する。

2. 半導体スイッチの設計と製作

2.1 必要な性能

SACLA で使用するモジュレータ[2]の回路図を Figure 1 に示す。SACLA の主加速部で使用する C バンド・クラ イストロンとS バンド・クライストロンの場合は、PFN 回路からの出力電流はピーク 5 kA、パルス幅 5 µs であり、入射 部で使用する L バンド・クライストロンの場合はピーク 3 kA、パルス幅 8 µs である。モジュレータの大部分は共通 なので、今回開発する半導体スイッチも、両方のモジュ レータで使用できるものとした。

Proceedings of the 14th Annual Meeting of Particle Accelerator Society of Japan August 1-3, 2017, Sapporo, Japan

PASJ2017 TUOL08

Figure 1: Circuit schematic of the klystron modulator at SACLA. The numbers written in the bracket (...) are the values for the L-band klystron and the others are for the C-band and S-band klystrons.

Table 1: Specification and Measured 1	Performance	of the
Solid-state Switch for the SACLA Mod	dulator	

	Requirement	Measurement	
Charging Voltage	Max. 50 kV	50 kV	
Pulse Current	5 kA, 5 μs, 3 kA, 8 μs	5.2 kA, 5.0 μs, 3.2 kA, 7.8 μs	
Pulse Repetition rate	Max. 60 pps.	60 pps	
Switching Time	< 500 ns	200 ns	
Timing Jitter (rms.)	< 3 ns	0.3 ns	
Current stability (rms.)	< 100 ppm	16 ppm	
Heat dissipation (60 pps)	< 3.8 kW	3.7 kW	
Temperature	< 60 °C	< 40 °C	
Cooling method	Forced oil circulation		
Size (W \times D \times H)	$700 \times 260 \times 800 \text{ mm}$		

SACLA で使用する半導体スイッチの要求仕様を、 Table 1 にまとめる。SACLA では、クライストロン高周波出 力の微小変動が自由電子レーザーの発振に大きな影響 を与えるため、モジュレータで発生させる高電圧パルス についても非常に安定でなければならない。そのため、 タイミングジッタについては、3 ns 以下が、パルス電圧と 電流については 100 ppm 以下が要求される。

SACLAのモジュレータは、コンパクトな鉄製タンクに 高電圧回路一式を納めるため、タンクの内部は絶縁油 で満たされている。タンク側面開口部から取り付けができ るよう、高さは 800 mm 以内とし、幅や奥行きもコンパクトなものとする必要がある。また、絶縁油中では、冷却水配管からの水漏れの心配があるため高電圧部品の直接水 冷は難しく、絶縁油による間接冷却を行っている。半導体スイッチも同様に、絶縁油を介しての間接冷却を行う こととした。高温での絶縁油の変質を避けるため、回路 素子および絶縁油の温度は60℃以下に抑える必要があ る。スイッチの電力損失は油の温度上昇を招き、また電 力出力を低下するので、極力減らす必要がある。定格の 出力電力(38 kW)の10%である3.8 kW 以下を電力損失 の上限とした。

2.2 使用する半導体素子

パワー半導体として一般的な IGBT は、通常はスイッ チング周波数が数10kHzであり、500ns以下のターンオ ン時間で使用するのは損失が大きく困難である。また、 FET は通過電流が小さく、並列数が多くなり過ぎ現実的 でない。今回採用した静電誘導型(Static Induction: SI) サイリスタ[8]は、耐電圧が高く、高速で大電流のスイッチ ングが可能というモジュレータ用途に適した半導体素子 である。SI サイリスタは、PIN 構造のダイオードにキャリア 制御用のゲートを埋め込んだ構造をしている。OFF 時に はゲートからキャリアが排出されゲートの周囲に大きな空 乏層が形成されるため、耐電圧を高く取ることができる。 ターンオン時には、ゲートから空乏層に直接キャリアが注 入され、高速なターンオン制御が可能である。ON 時に は PIN ダイオードと同様に導電率が非常に高く、大電流 を低損失で通過できる。今回使用する SI サイリスタ素子 は、新電元工業㈱の開発したサンプル品 (KSI50PA40T1)で、これは先に述べた阪大産研の半導 体スイッチ[4]や、長岡技科大、KEK でのパルス電源の

PASJ2017 TUOL08

試作実績[9]があり、1 素子あたり 1 kA 以上の大電流を 通過できることが確認されている。また、SOT-227 樹脂 ケースに封入されており、絶縁油中でも使用可能である。 なお、この SI サイリスタ素子は、今回の開発の途中で新 電元工業での開発製造が中止となり、残念ながら現在は 入手できない。

2.3 SI サイリスタ素子の特性試験と素子数の決定

今回の半導体スイッチでは、60 pps の繰り返しで 5 kA の大電流を通過させて使用するため、電力損失(=発熱) の見積もりが重要である。半導体の通過損失は、おおよ そ通過電流の 2 乗に比例するため、素子の並列数を増 やすほどスイッチ全体の損失は少なくなるがサイズやコ ストは増える。また、半導体素子を長期間安定に使用す るためには、素子の最大定格に対して十分なディレー ティング(通常 1/2 から 2/3 程度)をして使用電圧や電流 を決める必要がある。そこで SI サイリスタ素子について 特性を実測し、素子の直列数と並列数を決めた。

まず SI サイリスタ素子の直列数を決めるため、SI サイ リスタ素子に最大耐電圧である3.2 kV までの高電圧を印 加し漏れ電流の測定を行った。Figure 2 に測定結果を示 す。素子により個体差はあるが、印加電圧が2.7 kV を超 えると漏れ電流が増加することがわかった。また、素子の 温度が 60℃を超えると、漏れ電流が増加することもわ かった。これらの結果より、50 kV 半導体スイッチは素子 24 直列とし、素子の使用電圧は最大耐電圧の 2/3 であ る 2.1 kV とした。

次に、素子の並列数を決めるために、素子単体での パルス試験を行った。0.1 μ Fの高電圧コンデンサと0.3 μ Hの空芯コイルで PFN回路を組み、2 kVに充電して 400 A、1.5 μ sのパルス電流を流し、ターンオン速度とオ ン抵抗を測定した。結果を Figure 3 に示す。印加電圧が 1 kVを超えるとターンオン時間は 300 ns 程度となり、ス イッチング損失よりもオン抵抗による通過損失が主となる。 SIサイリスタ素子1個あたりのオン抵抗は、400 Aの電流 に対して0.17 Ω であった。このオン抵抗を仮定し、5 kA、 5 μ s あるいは3 kA、8 μ sの電流を流した時の電力損失 の計算値を Table 2 にまとめる。この電力損失を Table 1 に示した上限以内に収めるため、8 並列とした。この時の 1 素子当りの通過電流は約 600 A となる。これは阪大産 研などの実績(約 1 kA/素子)の 60%であり、ディレーティ ングも十分である。

Figure 2: (Left) Leak current of the 10 SI-thyristor elements. (Right) Temperature dependence of the leak current.

Figure 3: Pulse test results of the SI-thyristor element. (left) Turn-on rise time. (right) On-state resistance.

Table 2: Estimated heat dissipations P_{diss} of the solid state switch with various number of parallel connections N_p . A number of series connection is $N_s = 24$, and an on-state resistance is estimated to be 0.17 Ω .

Np	P _{diss} (C-band Mod.)	P _{diss} (L-band Mod.)
	5 kA, 5 µs, 60 pps	3 kA, 8 µs, 60 pps
6	5.1 kW	2.9 kW
8	3.8 kW	2.2 kW
10	3.1 kW	1.8 kW

2.4 機器の構成

今回開発した半導体スイッチの構成と写真を Figure 4 に示す。機器の構成については、昨年度の加速器学会 プロシーディングス[10]で詳しく報告しているので、今回 は概要を記す。

最も発熱の多い SI サイリスタ素子は、放熱性を高める ため高さ 55 mm のアルミ製ヒートシンクに密着させた。ス イッチの全高を抑えるため 2 直列 8 並列をひとつのヒー トシンクの両面に配置している。SI サイリスタの外側に、 Free Wheel ダイオードとスナバ回路、および分圧抵抗が 乗った基板を配置した。更に外側に SI サイリスタ用の ゲート回路が乗った基板を 2 層設け、最外層は電磁ノイ ズ遮蔽用のアルミ板で覆った。これを1ステージとして、 厚さ 6 mm のベークライト絶縁材を挟んで 12 ステージを 縦に重ね、全高を 800 mm 以内におさめた。ヒートシンク の内側は絶縁油を循環させる油道となっており、多数の フィンを介して絶縁油に放熱している。絶縁油は外付け のオイルクーラーによって強制循環され冷却される。

各ステージでは過電圧、温度異常、制御電圧不足な どを検知し、上位制御系に異常ステータスを発報すると ともに、LEDを点灯させて表示する。トリガパルスとス テータス信号は、双方向通信可能な光ファイバーを用い た通信モジュールにて、トリガ IO 部と各ステージ間を伝 送している。どこかのステージで異常ステータスが発報し た場合は、即座に全ステージのトリガを停止し、また異常 ステータス信号をモジュレータの制御部に送り。次の充 電動作を停止するインターロック機構を設けている。ゲー ト回路駆動用の電力は、100kHzの高周波を高電圧ケー ブルで伝送し、各ステージに用意されたトランスで絶縁し、 ステージ毎に整流して使用している。

Proceedings of the 14th Annual Meeting of Particle Accelerator Society of Japan August 1-3, 2017, Sapporo, Japan

PASJ2017 TUOL08

Figure 4: Schematic and photograph of the 50-kV slid state switch.

3. 大電力運転試験

3.1 運転試験の経過

完成した半導体スイッチは、まずメーカー(PPJ 社)に て 50 kV を印加し、単発にて 6 kA までのパルス出力試 験[10]を行った後、理研にて 2 種類のモジュレータに接 続しての連続動作試験を行った。

はじめに、Cバンド・クライストロン用モジュレータ(以下、 Cバンドモジュレータ)に半導体スイッチを接続し、運転 試験を行った。仮設の試験であったので、半導体スイッ チは小型の油タンクに収納し、モジュレータとは約2mの 高電圧ケーブルで接続した。オイルクーラーで25℃に冷 却した絶縁油を半導体スイッチのヒートシンク下部から流 し、上部から吸入する強制対流による循環冷却をした。 半導体スイッチは想定通りの動作をし、50 kVの充電電 圧にて、5.2 kA、5 µsのパルス電流を出力し、クライストロ ンを定格電圧で運転することができた。60 pps にて13時 間の運転を行い、サイリスタ素子の温度も 32℃(初期温 度+7℃)と問題のないことを確認した。

次に、L バンド・クライストロン用モジュレータの予備機 を本格的に改造し、半導体スイッチを内部に実装しての 長期運転試験を行った。最大定格である充電電圧 50 kV、パルス電流 3.2 kA、7.8 μs、繰り返し 60 pps にて 24 時間の連続運転を行い問題のないことを確認した。この モジュレータはその後、3 月よりL バンド高周波機器の大 電力運転試験に使用され、60 pps の繰り返しにて連続運 転を行っている。現在まで 1800 時間以上の運転を行っ ているが、トラブルも無く安定に運転を続けている。

3.2 パルス波形と通過損失

それぞれのモジュレータでの最大定格運転時の波形 を、Figure 5、Figure 6 に示す。C バンドモジュレータでの 試験 (Figure 5) にて、パルス電流波形の平坦部が少し右 肩上がりになっているのは、接続に用いた高電圧ケーブ ルのインピーダンスによるものである。アノード電圧の立 下り時間 (ピーク電圧の 80%から 20%までの時間で規定) は 200 ns で十分な速さであった。5.2 kA 通過時のスイッ チ全体のオン電圧は約 2 kV (Ron=0.4 Ω)で、ほぼ想定 通りであった。アノード電圧とパルス電流を掛けたものを 損失と考えると、60 pps 繰り返しで 3.7 kW の電力損失に 相当する。L バンド・クライストロン用モジュレータでの試 験 (Figure 6) では、パルス電流 3.2 kA 通過時のオン電 圧は約 800 V で、電力損失は 2.1 kW であった。これら は Table 2 に示した設計値と良く一致している。

L バンドモジュレータの連続運転時、高精度のオシロ

Proceedings of the 14th Annual Meeting of Particle Accelerator Society of Japan August 1-3, 2017, Sapporo, Japan

PASJ2017 TUOL08

スコープに1分間の波形を蓄積し、ショット毎のタイミング 変動、振幅変動を測定した。タイミング変動に関しては、 クライストロン電圧の立上りタイミングの測定から、変動幅 は 0.3 ns (rms.)であった。振幅に関しては、クライストロン 電圧の変動幅は 29 ppm(rms.)、半導体スイッチ通過電 流の変動幅は 16 ppm(rms.)であった。いずれも、要求性 能(<3 ns、<100 ppm)を十分に満足していることを確認し た。

Figure 5: Output waveform of a C-band klystron modulator at the 5 kA, 5 μ s pulse.

Figure 6: Output waveform of an L-band klystron modulator at the 3 kA, 8 μ s pulse.

3.3 温度上昇と発熱量の見積もり

Lバンドモジュレータを 60 pps、50 kV の最大定格にて 24 時間連続運転した時の、各部の温度を Figure 7 に示 す。モジュレータ・タンク内の絶縁油は自然対流によって 冷却されるので時定数が長く、約8時間かけて温度が上 昇し38.5℃となった。一方、半導体スイッチのヒートシンク 部は、25℃に冷却された絶縁油が常時循環しているの で、温度は約27℃でほぼ一定である。SI サイリスタは底 面をヒートシンクで冷却されつつもケース側は周囲の絶 縁油によって温められ、その中間の温度となっている。 いずれにしても、温度は40℃以下であり問題はない。

連続運転中の、オイルクーラー吐出時と戻り時の絶縁 油の温度差はCバンド最大定格運転時に3.3℃、Lバン ド最大定格運転時に3.1℃であった。絶縁油の循環流量 は C バンド試験時は 36 L/min、L バンド試験時は 26 L/min と見積もられ、数 L/min の不定性はあるが、この流 量と油の温度上昇から見積もられる発熱量は、C バンド で 3.4 kW、Lバンドで2.1 kW であり、前出の波形からの 算出や、Table 2 の損失設計とも一致している。

Figure 7: Temperature trends of the solid-state switch during its continuous operation at 60 pps, 50 kV.

4. まとめ

SACLA の油密閉型モジュレータにて、短寿命サイラト ロンを置き換えるべく、半導体スイッチの開発を行った。 半導体スイッチの最大使用条件は、50 kV、パルス電流5 kA、5 µs および3 kA、8 µs、パルス繰り返し60 pps であ る。スイッチ素子としては高速・大電流のスイッチングに 適した SI サイリスタを用い、これを8 並列24 直列で構成 した。数 kW となる発熱を効率的に排熱するため、サイリ スタ素子を付けたヒートシンクの中に絶縁油を循環させ た。ヒートシンクを小型化して全高を800mmにおさめ、モ ジュレータ内に設置できるようにした。

完成した半導体スイッチは、2 種類のモジュレータに 接続して運転試験を行った。最大定格である 50 kV、 60pps にて連続運転を行い、想定通りの動作を確認した。 電圧の立下り時間も 200 ns と十分な速さで、タイミング変 動 0.3 ns、電流変動 16 ppm と、安定性の面でも要求性 能を満足することを確認した。更に、最大定格で運転時 の電力損失は 3.7 kW で、サイリスタ素子の温度も 40[°] 以下であり、問題がないことを確認した。

半導体スイッチを実装したモジュレータは、テストスタンドにて 1800 時間の運転を行っており、これまで問題は 生じてない。今後は、SACLA の実機にて使用することも 検討している。また、SI サイリスタ素子については、メー カーでの製造が中止となっているので、今後は他の半導 体素子を用いた高電圧スイッチを開発する予定である。

参考文献

- [1] T. Ishikawa et al., Nature Photonics 2012.141, (2012).
- [2] T. Inagaki et al., PRST-AB 17, 080702, (2014).
- [3] 益田邦和 他,第11回日本加速器学会 (2014).
 中澤伸候 他,本学会年会 (2017).
- [4] A. Tokuchi et al., NIM-A 769, 72-78 (2015).
- [5] C. Burkhart *et al.*, Proceedings of Pulsed Power Conference 2013.
- [6] 原田瞬 他, 第12回日本加速器学会 (2015).
- [7] Applied Pulsed Power; http://www.appliedpulsedpower.com/ Diversified Technologies, Inc.; http://www.divtecs.com/
- [8] J. Nishizawa and K. Nakajima, Revue de Physique Appliquée. Vol13, No.12, 725-728 (1978).
- [9] 田中利樹 他, 電気学会パルスパワー研究会資料 (2012).
- [10] 天神薫 他, 第13 回日本加速器学会 (2016).