PASJ2017 FSP021

東北大学電子光理学研究センターの現状報告

STATUS REPORT OF RESEARCH CENTER FOR ELECTRON PHOTON SCIENCE AT TOHOKU UNIVERSITY

日出富士雄[#], 柏木茂, 鹿又健, 柴崎義信, 髙橋健, 長澤育郎, 南部健一, 武藤俊哉, 濱広幸 Fujio Hinode [#], Shigeru Kashiwagi, Ken Kanomata, Yoshinobu Shibasaki, Ken Takahashi, Ikuro Nagasawa, Kenichi Nanbu, Toshiya Muto and Hiroyuki Hama Research Center for Electron Photon Science, Tohoku University

Abstract

In Research Center for Electron Photon Science (ELPH) at Tohoku University, a lot of research and educational activities, such as the quark/hadron nuclear physics, the nuclear chemistry and RI production, the detector R&Ds at the test beam lines etc., have been conducted as a part of Joint Usage / Research Centers since FY 2011. For the experimental study of nuclear physics as well as the application at the test beam lines, high energy gamma rays generated by the bremsstrahlung in the 1.3 GeV booster storage ring have been actively utilized. Meanwhile, in addition to the joint usage program that has been implemented for many years with the high-intensity linac, we have also started the new business, short-lived nuclear RI supply platform, since April 2016. The current status of machine operation and also recent improvements of the accelerator complex are reported.

1. はじめに

東北大学電子光理学研究センターは、1966年に理学 研究科附属原子核理学研究施設(核理研)として発足し て以来、学外にも開かれた共同利用施設として運用され てきたが、2009年12月に大学附置の研究センターとな り、その後2011年4月からは共同利用・共同研究拠点 (電子光理学研究拠点)として、核物理をはじめ、核・放 射化学の研究や検出器開発など、広く利用研究に供さ れている. Figure 1に共同利用加速器施設を示した.第 1実験室では、大強度linacからの電子ビームによって白 金などのコンバーターを介して生成したガンマ線を標的 試料に照射することで、光核反応によるRI製造を行って いる.またブースター蓄積(BST)リングでは2本のガンマ 線ビームライン(NKS2とFOREST)を第2実験室とGeVγ実験棟に有し、震災後に新たに建設された入射専用 linacからの電子ビームをBSTリングにて最大1.3 GeVま で加速した後、制動放射により高エネルギーガンマ線を 生成することで、これを用いたクォーク・ハドロン核物理 の研究やテストビームラインでの検出器開発などが活発 に行われている.この他 2010 年に竣工された光源加速 器棟においては、50 MeV 試験加速器 (t-ACTS) を建 設し超短パルス電子ビームの生成とこれによるコヒーレン トテラヘルツ光源の開発研究などを進めている.また昨 年 4 月からは、新学術領域研究の取り組みとして、阪大 核物理研究センターなどとともに短寿命 RI 供給プラット フォーム事業も展開している.これら加速器群の現状や センターの利用状況、今後の整備計画などについて、以 下に報告する.

2. 運転の現状

2.1 ビーム性能と利用状況

各電子加速器のビーム性能を Table 1 に示す. 大強

Figure 1: Accelerator complex in ELPH, Tohoku University.

[#] hinode@lns.tohoku.ac.jp

PASJ2017 FSP021

Table 1: Beam Performances

energy $10 \sim 60 \text{ MeV}$	
6,	
normalized emittance $\sim 80 \ \pi \text{mm} \cdot \text{mrad}$	
max. repetition rate 300 Hz	
macropulse duration $\sim 3 \ \mu s$	
current (peak/average) 130 mA / 120 µA @ 50 MeV	
Injector LINAC	
energy $\sim 90 \text{ MeV}$	
normalized emittance $< 10 \ \pi \text{mm} \cdot \text{mrad}$	
current (peak) $\sim 40 \text{ mA}$	
BST ring	
energy $0.8 \sim 1.3 \text{ GeV}$	
stored current $\sim 30 \text{ mA} \text{ (typical)}$	
repetition rate ~ 0.06 Hz (typical)	
t-ACTS	
energy $30 \sim 50 \text{ MeV}$	
bunch charge $1 \sim 10 \text{ pC/bunch}$	
normalized emittance $< 10 \ \pi \text{mm} \cdot \text{mrad}$	
minimum bunch length < 100 fs (rms, @~ 30 MeV)	
macropulse duration $\sim 2 \ \mu s$	

度 linac の代表的な運転エネルギー(50 MeV)での平均 ビーム電流は 120 µA で,6 kW を超える国内屈指の電 子ビームパワーを有している. BST 入射用 linac は, 独立 2 空洞型の熱陰極高周波電子銃 (ITC RF-gun) eal a 電磁 石,2本の3m長S-band加速管,90度偏向の分散部な どから構成されており、通常運転時のエネルギーは 90 MeV, マクロパルスのピーク電流 ~40 mA, 規格化エミッ タンス 10 πmm·mrad 以下である[1]. BST リングは, 大震 災からの復旧の際に最大エネルギーを1.3 GeV に増強 するとともに、6極磁場を重畳した複合型4極磁石を導入 することで色収差補正を可能とした[2]. 典型的な運転 モードでは周回電流は 30 mA, 入射から次の入射まで の繰り返しは 16 秒サイクル (フラットトップ 10 秒) である. 大強度 linac との同時運転時には、契約電力の制約によ りデューティーサイクルを更に半分程度に下げる必要が あり,このためマシンタイムの調整に苦慮している. t-ACTS 試験加速器では、入射器と同じく電子銃に ITC RF-gun を用い、これにより生成したエネルギー広がりの 小さな電子バンチに対して,加速管中での速度集群を 利用することで 100 fs 以下の極短電子バンチ生成と光 源開発の研究をしている[3, 4]. 現在は, ImPACT プログ ラム(「ユビキタス・パワーレーザーによる安全・安心・長 寿社会の実現|佐野雄二プログラムマネージャー)の一 部として,高エネルギー加速器研究機構の山本樹教授 が開発しているマイクロアンジュレータの評価試験を実 施している[5]. この他, 低屈折率のシリカエアロゲル薄 膜から発生するチェレンコフ光を用いたビームモニター の開発研究なども行っており[6]、将来的には高品質 ビームを用いた加速器・ビーム物理学分野での共同利 用も視野に入れて開発を進めている.

2.2 稼働状況

最近の運転時間の推移を Figure 2 に示す. 震災後 2 年間は復旧作業のため共同利用は中断されていたが, 2013 年度後半より利用運転を再開した. 震災後の電気 料の高騰により,運転経費を十分に確保することが困難 な状況が続いているが,施設全体で徹底的な節電に努 めることで,震災前に近い 2000 時間の運転を実現して いる.また延べ利用者数も2年続けて1000人を超えるま でに回復してきている. 昨年度の採択課題数は大強度 線形加速器が6件,BSTが21件で、本年度も順調に共 同利用が進められている.この他,2016年度より,新学 術領域研究「学術研究支援基盤形成」リソース支援プロ グラムとして, 短寿命 RI 供給プラットフォーム事業を大阪 大学核物理研究センター,理化学研究所仁科加速器研 究センター、東北大学サイクロトロン・ラジオアイソトープ センターとともに展開している[7]. 特に電子光センター では、サイクロトロンで作りにくい中性子過剰側のRIが製 造できる利点を踏まえ, (γ, p)反応により生命科学分野で 需要のある無担体 42,43K の製造などが行われている.

Figure 2: Operating time and number of users.

3. トラブルと更新計画

3.1 トラブルと改善作業

以下に最近の主要なトラブル事例と改善作業の概要 を列記する.

熱陰極高周波電子銃での放電

入射器で使用している高周波電子銃において, 陰極空洞で放電が発生し, ビームが取り出されなくなる現象が約1年の間隔で発生している. 放電の原因は CeB₆ 熱陰極と空洞壁の間に炭化物状の物が析出するためであるが, t-ACTS で使用している同 ーモデルの電子銃においてはみられないため, な ぜ入射器で発生するのか未だ明確になっていない. 入射器用電子銃においては真空度が若干高い (~5E-6 Pa)ことが原因と推測されたため, 電子銃近 傍にイオンポンプを増設したが, 改善は見られな かった. 陰極自体が使用不能と判断された訳では ないが, 現在は放電が生じ始めたら陰極を交換す ることで対処している.

• BST 用クライストロン高圧電源の故障

PASJ2017 FSP021

クライストロン電源のインバーター回路(IGBT)が故 障し、利用運転が中断するトラブルがあった.故障 した IGBT は既に廃番になっており、同等品も存在 しないため修理には設計変更が必要となり、時間と 費用の面から容易ではない.幸いにも、最大定格 は利用運転時の出力より十分に余裕があったため、 10 台ある高圧ユニットから故障した回路を含めて 2 台を外した 8 台で運転を行うことで、1 週間を経ず に運転を再開することができた.この電源は年頭 にメーカーによる定期点検を実施した際には異常 は認められなかったが、既に製造後 20 年が経過し ており、経年劣化が原因と推測されるため楽観は 許されない.これまでクライストロン電源を半導体ア ンプ化するための予算要求を続けてきたが、いよい よ深刻さが増している状況である.

瞬停による冷却塔ファンの異常停止
東北電力の事故により比較的長い瞬停が発生し、
この影響により加速器系冷却塔の空冷ファンが異常停止した.しかし異常検知系の誤動作と重なり、
空冷ファンの停止が認識されないまま熱負荷がかかってしまい、通常25℃程度の冷却水温が40℃超まで上昇するするトラブルがあった.この水温上昇による実害はなかったが、近年は年に1~2回の頻度で異常を伴う瞬停が発生しているので、今後に備えて加速器オペレーターが迅速に異常を把握できるように冷却水温のモニターを整備した.

• 大強度 linac 用モジュレータの絶縁油交換 10 年以上にわたって交換していなかったモジュ レータ内部にあるチャージングチョークやシャントダ イオード等のオイルタンクの大半で耐圧劣化が認 められたため,長期停止期間中に特に劣化の著し いタンク内の絶縁油を交換した(Figure 3 参照).ま た,この際にタンク内のシャント回路素子(キャパシ タ,ダイオード,抵抗)の半数程度が破損しているこ とも判明し,交換した.本年度末に残りの絶縁油交 換と素子の健全性確認を予定している.

BST リングの真空度改善

BSTリングのイオンポンプの経年劣化による排気能力低下も顕著で,運転時の真空度(~E-5 Pa)が

Figure 3: Oil tanks for charging choke (left) and shunt diodes (right).

あまり改善しない状況であった. 幸い使用していた イオンポンプの交換用セルがまだ入手可能であっ たため,建設当初から運転している 16 台のイオン ポンプの内 12 台までの交換を終了した. 今年度の 停止期間中に残りの交換が終了する予定である. ・ 制御システムの改善・更新

制御システムは概ね順調に稼働している. 古い電磁石電源の更新と合わせて,システムの改善・更新も地道に進めている[8].

3.2 更新計画

電気設備の更新は、特高変電所のガス遮断機(H19) 以降、特高変電所変圧器更新と電気室非常用発電設備 更新(H21)、電気室高圧操作盤と変圧器の一部更新 (H25-26)と実施されてきたが、最終となる電気室変圧器 と低圧配電盤の更新が本年度末に実施されることとなっ た.また非密封 RI 取扱いに関連した第 1 実験室の床・ 壁面の改良工事も学内の予算措置を得ることができたた め同時期に実施することとなり、本年度は例年よりも運転 期間を大幅に縮小せざるを得ない状況である.

大強度 linac においては、メーカーからの部品供給が 終了した熱電子銃陰極について、代替品(EIMAC Y646B)の準備が進められており、間もなく単体でのビー ム試験を実施する予定である[9].また性能改善に向け た照射システムの評価や更新も進行中である[10].

4. まとめ

大震災後の運転再開から4年が経過し,順調に利用 運転を継続している.建設から50年が経過した大強度 linacでは、モジュレータや電子銃などについて地道に 更新・改修作業を進めている.入射器やBSTリングにつ いても概ね順調に稼働している.連続運転時の運転要 員の確保が問題となっているが、施設管理の業務委託 会社との間で、従来業務に加え平日の日中に対して一 部の運転監視業務も担うことで契約ができた.しかし長 期にわたる昼夜連続運転の際の要員確保は、運転経費 の問題と共に今後の課題として残っている.

参考文献

- [1] S. Kashiwagi *et al.*, Proc. of the 10th Annual Meeting of Particle Accelerator Society of Japan, p.23, 2015.
- [2] F. Hinode *et al.*, Proc. of the 10th Annual Meeting of Particle Accelerator Society of Japan, p.146, 2015.
- [3] S. Kashiwagi *et al.*, Proc. of the 14th Annual Meeting of Particle Accelerator Society of Japan, WEOM03, 2017.
- [4] H. Saito et al., Proc. of the 14th Annual Meeting of Particle Accelerator Society of Japan, WEP013, 2017.
- [5] S. Yamamoto *et al.*, Proc. of the 14th Annual Meeting of Particle Accelerator Society of Japan, THOL11, 2017.
- [6] Y. Saito *et al.*, Proc. of the 14th Annual Meeting of Particle Accelerator Society of Japan, WEOM04, 2017.
- [7] https://www.rcnp.osaka-u.ac.jp/~ripf/
- [8] I. Nagasawa *et al.*, Proc. of the 14th Annual Meeting of Particle Accelerator Society of Japan, TUP103, 2017.
- [9] S. Miura *et al.*, Proc. of the 14th Annual Meeting of Particle Accelerator Society of Japan, WEP109, 2017.
- [10] K. Takahashi *et al.*, Proc. of the 14th Annual Meeting of Particle Accelerator Society of Japan, TUP008, 2017.