PASJ2015 WEP087

SAGA-LS 電子蓄積リング加速過程のオプティックス評価

ESTIMATION OF OPTICS FUNCTIONS IN RAMP-UP PERIOD AT THE SAGA-LS ELECTRON STORAGE RING

岩崎能尊[#], 高林雄一, 金安達夫, 江田茂 Yoshitaka Iwasaki [#], Yuichi Takabayashi, Tatsuo Kaneyasu, Shigeru Koda SAGA Light Source

Abstract

We analyzed the orbit response matrix (R-Matrix) at several energies, for increasing the storage current of the SAGA Light Source (SAGA-LS) electron storage ring, quickening the ramp-up speed, and injecting at a new operating point. The differences between observed tunes and calculated tunes by R-Matrix analyses were less than (0.019, 0.026) horizontal and vertical respectively. Dispersion functions were also measured to compare the results of the R-Matrix analysis and the direct measurements. It was found that the distortions of the optics functions during ramp-up period were small except for the injection energy. Dispersion function analyzed by the R-Matrix method at the energy of 0.928 GeV was inconsistent with the direct measurement. The results of excitation properties of the quadru-pole magnets strengths will be used for the control of the tunes and the optics functions during the ramp-up period.

1. はじめに

SAGA Light Source (SAGA-LS) 電子蓄積リング にはリニアックにより 0.257 GeV まで加速された電 子を入射する。蓄積リング内で所定の電流量まで蓄 積した後、蓄積リング内で 1.4 GeV までランプアッ プする。ランプアップ所要時間は約 4 分である。現 在の最大蓄積電流量約 340 mA であり、放射光ユー ザーに 300 mA 程度の蓄積電流量でビームの提供を 行う。

蓄積リング電磁石電源の励磁パターンは、コミッショニング期に磁場データーから検討し、更に試行 錯誤による補正を加えて構築した。

将来、加速電流の増加、加速時間の短縮、あるい は新しい動作点でのランプアップを可能とするため に、蓄積リング電磁石電源励磁パターンの計画的な 構築が必要とされる。そこで、加速過程における蓄 積リングオプティックスを、軌道応答行列解析の手 法を用いて評価することとした。

SAGA-LS 蓄積リングラティス及び電源 構成

SAGA-LS 電子蓄積リングのラティスは 8 回対称の Double Bend である^[1] (Figure 1)。4 極電磁石は 3 つ のファミリー (QF1, QD1, QF2) で構成される。超 伝導ウィグラー^{[2][3]}による強いチューンシフトを補 正するため、長直線部 LS2 および LS5 上下流の 4 極 電磁石ダブレットはそれぞれ QFW1 及び QDW1、 QFW2 及び QDW2 電源で励磁される。蓄積リング主 要電磁石電源は、BM、QF1、QD1、QF2、QFW1、 QDW1、QFW2、QDW2、SF、SD の合計 10 台であ る。このうち、6 極電磁石用電源 SF 及び SD は、励 磁電流に対して磁場が比較的線形な QF2 に比例する ように励磁する。その他の主要電磁石電源は、PLC の内部メモリーに格納された励磁パターンに従って 出力電流が増大される。ランプアップパターンの セットポイントは、各電源につき 10000 点あり、 PLC より各電源に約4分間でセットポイントが出力 される。

QFW2及びQDW2は、2015年秋のシャットダウン にインストールされる住友電気工業ビームライン超 伝導ウィグラーのために、2014年に設置された^[4]。

2015 年春には超伝導ウィグラー2 号機設置に伴う 真空槽の置き換えが終了し、2 台目となる超伝導 ウィグラー設置のための各種準備が整った^[5]。

Figure 1: Lattice of the SAGA-LS storage ring.

3. 軌道応答行列解析

蓄積リングのオプティックスを、軌道応答行列 (R-Matrix)のフッティングにより評価する方法^[6] は、多くの放射光リング等において適用されている (参考文献^[7-9]など)。SAGA-LS においても、ユー ザー運転時におけるオプティックス評価のために、 独自に計算コードを開発した。

R-Matrix のフッティングによるオプティクスの解析は、計算による R-Matrix と実測による R-Matrixの 差が最小になるように、蓄積リングの各種パラメーターを最適化するものである。フィッティングパラ メーターを増やすことにより、skew4 極成分の分布

[#] iwasaki@saga-ls.jp

PASJ2015 WEP087

等も計算可能であるが、ここでは、リニアラティス にとって最も重要な、4 極電磁石 K 値、ステアリン グ電磁石キック力、BPM のゲインエラーのみの フィッティングを行った。

なお、R-Matrix 解析においては、ステアリング電磁石キック力と、BPM ゲインエラーの間には自明な 非独立性がある。つまり、全てのステアリング電磁 石キック力を定数倍し、全てのBPM ゲインエラーを 定数で割ったものは、等しい R-Matrix となる。文献 ^[6]においては、R-Matrix のフィッティングに加え、 分散関数の測定値もフィッティングパラメーターに 加えている。SAGA-LSにはスクリーンモニターがあ るため、ステアリング電磁石 1 台のキック力はユ ニークに決定される。従って、分散関数はフィッ ティングパラメーターとしては含めていない。

4. 加速過程のチューン測定と R-Matrix 解 析

ユーザー運転時は、257 MeV で入射完了後、約 4 分間で 1.4 GeV までランプアップを行うが、ランプ アップを途中のエネルギーで停止させ、各エネル ギーにおけるチューンを計測した。また、各エネル ギーでの R-Matrix を取得した。分散関数も計測した が、分散関数の測定結果については次節において記 述する。

4.1 加速過程のチューン測定

入射エネルギーから 1.4 GeV までのランプアップ に対し、ランプアップを途中で停止し、チューンの 測定を行った。測定結果を Figure 2 チューンダイヤ グラム上に示す。Figure 2 に示すように、ランプ アップ中、チューンは大きく変動し、差共鳴を何度 か横断しつつ 1.4 GeV に到達する。 ランプアップパ ターンは、3次の共鳴を避けるように試行錯誤によ り構築されたことがわかる。ランプアップ中のビー ムロスは、加速直後および1 GeV 付近で生じること が多かったが、それは、そのエネルギー付近におけ る動作点が3次の共鳴に接近することが原因だと推 定される。1.399 GeV と 1.4 GeV でチューンが若干異 なるのは、ランプアップ終了後、外部 DCCT による 電磁石電源フィードバックが機能するためである。 なお、Figure 2 では加速エネルギーの順序を見やす くするために、観測点を実線で結んでいる。

チューン測定は、ランプアップを停止させた状態 で行った。実際のランプアップ最中のチューンは、 真空チェンバーに誘導される渦電流の差用により若 干異なる可能性がある^[10]。SAGA-LS では蓄積リン グとしてはやや速いランプアップを行うが、真空 チャンバーに流れる渦電流による効果はほぼ無視で きると仮定した。また、偏向電磁石、4 極電磁石は それぞれ厚さ1 mm, 0.5 mmの電磁鋼板で積層されて おり、電磁石内部に流れる渦電流の効果も少ないと 仮定した。

4.2 R-Matrix 解析による4極電磁石励磁特性

ランプアップを途中で停止し、各エネルギー

において R-Matrix を取得し、解析を行った。R-Matrix 解析においては、水平・垂直合計 80 台のステ アリング電磁石、水平・垂直合計 48 台の BPM によ る 3840 個の要素に対し、4 極電磁石 K 値(40 個)、 ステアリング電磁石キック力(80 個)、BPM ゲイン エラー(48 個)の合計 168 個のパラメーターフィッ ティングを行った。

Figure 2: Measured horizontal and vertical tunes in the tune diagram. Blue lines, red lines, and green lines indicate 2nd, 3rd, and 4th resonance respectively. Numerical values are the beam energies (GeV).

R-Matrix 解析においては、4 極電磁石の実効的なK 値が算出される。磁場勾配G(T/m)を得るために はビームのエネルギーを知る必要がある。ビームの エネルギーは、偏向電磁石の磁場データーより求め た。Figure 3 に R-Matrix 解析により得られた各エネ ルギーにおける4 極電磁石(QF1-1)の実効的な磁場 勾配の励磁特性を示す。Figure 3 には4 極電磁石の積 分磁場測定データーより求めた励磁特性も合わせて 示した。実効的な磁場勾配は、磁場勾配の積分G・ L積(T)を電磁石の物理的な長さL(m)で割るこ とにより算出した。

R-Matrix 解析により算出した 4 極電磁石磁場勾配 は、磁場測定データーに対し、励磁電流が増大する につれて違いが大きくなる。励磁電流が増大するに つれ、実効的な磁場勾配が減少する傾向がある。そ の差は 1.4 GeV の励磁時で約 6%であった。Figure 1 に示すように、SAGA-LS 電子蓄積リングのラティス は非常にコンパクトに設計されている。4 極電磁石 と隣り合う6極電磁石の間隔は 85 mm しかない。磁 場測定はスタンドアロンの状態で行われており、磁 場の干渉により、実効的な磁場強度が落ちているの かもしれない。SAGA-LS では、電源設定値と磁

Figure 3: Excitation curve of the QF1-1 magnet. Squares and rhombuses denote the results of magnetic field measurements and R-Matrix analysis respectively. Lines are their linear interpolations.

場データーから計算されるチューンが実験値を再現 しないが、磁場の干渉がひとつの原因かもしれない。 この点については、3D磁場計算で検証したいと考え ている。

4.3 R-Matrix 解析による加速過程のチューン推定

各エネルギーにおいて R-Matrix 解析を行い、偏向 電磁石磁場データーより得られるエネルギーより実 効的な 4 極電磁石磁場勾配を算出した。各エネル ギーでの磁場勾配を線形補間することにより、任意 のエネルギーにおける K 値が算出される。Figure 4 に各エネルギーにおける R-Matrix 解析より算出され る水平・垂直チューンを示す。R-Matrix 解析による チューンと、実測によるチューンの差は、水平・垂 直各(0.019, 0.026) 以下であった。これは、加速過程 におけるチューン変動幅に比べて十分に小さい。

Figure 4 の実線は、R-Matrix 解析から得られる各エ ネルギーの磁場勾配を線形補間し、ランプアップパ ターン設定値ごとにチューンを計算したものである。 R-Matrix を測定したのは、入射エネルギーと定格の 1.4 GeV を含む 10 のエネルギーであるが、R-Matrix を測定していない任意のエネルギーにおけるチュー ンについてもある程度推定できるようになった。今 後、ランプアップ過程におけるチューン制御の精度 が向上すると期待できる。

5. 加速過程のオプティックス

R-Matrix 解析により各エネルギーにおける K 値が 算出される。その K 値を用いてオプティックス関数 を計算した。Figure 5 に各エネルギーにおける R-Matrix 解析より得られたオプティックス関数と RF 周 波数を変化させ計測した分散関数を示す。計算には トラッキングコード Tracy2^[11]を用いた。分散関数を 測定したのは、計算と実験値との整合性を確認する ためである。分散関数の算出に当たっては、モーメ ンタムコンパクションファクターとビーム軌道の変 位を知る必要がある。モーメンタムコンパクション ファクターは、R-Matrix 解析からも算出される。ま た、ビーム軌道の変位は、BPM のゲインエラーを含 んでいる。BPM ゲインエラーはR-Matrix 解析からも 算出される。しかし、分散関数の測定値としては、 モーメンタムコンパクションファクターにデザイン オプティックスの値を使用し、BPM のゲインにエ ラーはないと仮定した。

Figure 4: Fractional tunes of horizontal and vertical during ramp-up period. Blue dots are measured tunes and orange squares are calculated tunes from the R-Matrix analysis. Lines are calculated tunes from the linear interpolated quadru-pole field gradient by R-Matrix analysis.

Figure 5 に見られるように入射エネルギーでは、

PASJ2015 WEP087

Figure 5: Optics functions during ramp up. Dots are results of direct measurements of dispersion functions.

ベーター関数のやや大きな歪みが見られる。これは、 入射エネルギーにおいては、QF1(QD1)ファミ リーに属する QFW1(QDW1)出力値の誤差がそれ ぞれ、-0.43%,+0.25%と大きいのが原因である(電 源外部に設置した DCCTのモニター値による)。し かし、入射セプタム電磁石、キッカー電磁石の設定 値とタイミングは、このオプティックスで入射速度 が最大となるように最適化されており、特に入射に 支障はない。300mA蓄積に要する入射時間は大よそ 3分程度であり、日常のユーザー運転においては、 バンチフィリングの均一性を保つため、更に入射速 度を意図的に低下させている。

1.4 GeV ユーザー運転時においては、ベーター関数、分散関数共に大きな歪みは見られない。チューンのデザイン値は(5.796, 1.825)である。チューンの計測値は(5.801, 1.841)であり、R-Matrix 解析によるチューンの計算値は(5.791, 1.821)であった。計算値の計測値に対する差は、水平・垂直各(-0.01,-0.02)であり、計測値をよく再現した。長直線部の分散関数はデザイン値では 0.6 m であるが、計測したところ、0.5 m であった。R-Matrix 解析よるオプティックス解析によっても同様であった。R-Matrix 解析により得られる K 値から計算されるエミッタンスは、27 nm-rad である。デザイン値は 25nm-rad である。分散関数のデザイン値との差が輝度に与える実効的な影響は大きくないと考えられるため、分散 関数の補正を行う予定はない。

加速過程において、大幅なベーター関数の歪みは 見られなかった。しかし、エネルギー0.928 GeV の 時だけ、R-Matrix の解析による分散関数の計算値に 大きな歪みが見られた(Figure 5 のエネルギー0.928 GeV 参照)。一方で、実測値では分散関数の歪みは 見られない。このエネルギーにおける R-Matrix の解 析だけ実測による分散関数を再現しなかった。この エネルギーにおいては計 4 回の R-Matrix を取得し、 解析を行ったがいずれも分散関数の計測値を再現し なかった。原因については現在のところ不明である。

6. まとめと今後の予定

加速電流の増加、加速時間の短縮、あるいは新し い動作点でのランプアップを行うために、ランプ アップを途中で停止し、R-Matrix を取得した。得ら れた R-Matrix を解析し、各エネルギーでのオプ ティックスを評価した。

加速過程において大きなチューンの変動が見られ、 3 次の共鳴を避けるようにランプアップパターンが 構築されていた。

各エネルギーにおいて R-Matrix 解析を行い、4 極 電磁石の磁場勾配励磁特性を算出した。ビームのエ ネルギー算出には、偏向電磁石の磁場データーを用 いた。任意のエネルギーの4 極電磁石磁場勾配は、 各エネルギーで求めた磁場勾配を線形補間すること で導出した。R-Matrix 解析により得られる 4 極電磁 石励磁特性は、スタンドアロンでの磁場測定結果よ りも最大で約 6%小さく算出された。4 極電磁石と 6 極電磁石との磁場の干渉が原因の可能性がある。

R-Matrix 解析により算出される K 値を用いた チューンは計測値を概ね再現し、その差は最大でも (0.019, 0.026) 以下であった。これは、ランプアップ 過程におけるチューン変動幅に対し十分に小さい。

R-Matrix 解析の手法を用いることにより、任意の エネルギーにおけるオプティックス制御の精度が向 上すると考えられる。

しかし、エネルギー0.928 GeV においては R-Matrix 解析により計算した分散関数は、計測値を再現しなかった。原因については不明である。

今後、解析結果を用いてランプアップパターンの 見直しを行いたい。特に、加速直後と、1 GeV 付近 は 3 次の共鳴に近く、大電流のビーム蓄積のために はランプアップパターンの計画的な更新が必要と考 えられる。

また、今後、電磁石電源モニターシステムの高速 化を行い、リアルタイムのオプティックス計算シス テムを構築したいと考えている。現在は、蓄積リン グ電磁石電源出力値は 1Hz でモニターしているが、 ランプアップ直後の速い電源の応答や、ビーム貯蔵 中のビーム寿命の急落などの原因は特定されていな い。DC 確度 0.1%,サンプリング速度 1ks/sec 程度の 電源モニターシステムとオプティックス解析により、 これまで原因が特定できなかった事象についても理 解が深まると期待される。

R-Matrix の取得には、蓄積リング全周で約1時間 要している。これは、BPMの読み取り速度が1Hzと 遅いのが要因である。今後、BPM 読み取り速度向上 のためのシステムも検討している。

参考文献

- Y. Iwasaki, et al., "Lattice Design of SAGA Synchrotron Light Source", Proceedings of PAC'03, Portland, 3270-3272, 2003.
- [2] S. Koda et al., "Design of a Superconducting Wiggler for the SAGA Light Source Storage Ring", IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 21, 32 (2011).
- [3] S. Koda, et al., "Effects of a hybrid superconducting threepole wiggler on the stored beam at the SAGA-LS storage ring", Nucl. Instrum. Methods A682, 1(2012).
- [4] Y. Iwasaki, "Control System of Two Superconducting Wigglers and Compensation Magnets in the SAGA Light Source", Proceedings of the PCaPAC2014, Karlsruhe, 84-86, 2014.
- [5] Kaneyasu, et al., "Installation of a Second Super Conducting Wiggler at SAGA-LS", 12th International Conference on Synchrotron Radiation Instrumentation (SRI2015), to be published.
- [6] J. Safranek, "Experimental determination of storage ring optics using orbit response measurements", Nucl. Instr. and Meth. A 388, p. 27-36 (1997).
- [7] C. Steier, et al., "Fully Coupled Analysis of Orbit Response

Matrix at the ALS", Proceedings of EPAC2000, Vienna, 1080-1082, 2000.

- [8] A.-S. Muller, et al., "Linear and Nonlinear Optics Studies in the ANKA Storage Ring", proceedings of PAC'03, 3273-3275, 2003.
- [9] Laurent S. Nadolski, "Use of LOCO at Synchrotron SOLEIL", proceedings of EPAC08, Genoa, 3131-3133, 2008.
- [10] Edited by Alexander Wu Chao and Maury Tigner, "Handbook of Accelerator Physics and Engineering" 2nd Printing, 268.
- [11] H. Nishimura, "TRACY, A Tool for Accelerator Design and Analysis", EPAC 88,803,1989.