SAGA-HIMAT プロジェクト及びそのビーム試験 BEAM TEST OF SAGA-HIMAT

金澤光隆^{#, A)}, 遠藤真広^{A)}, 日向猛^{A)}, 綱島義一^{A)}, 佐藤弘史^{A)}, 新開英秀^{A)}, 工藤祥^{A)}, 塩山善之^{A)}, 北村信^{A)}, 十時忠秀^{A)}, 永澤勇一^{B)}

Mitsutaka Kanazawa^{#, A)}, Endou Masahiro^{A)}, Takeshi Himukai^{A)}, Yoshikazu Tsunashima^{A)}, Hiroshi Sato^{A)}, Eishu

Shinkai, Sho Kudo^{A)}, Yoshiyuki Shioyama^{A)}, Makoto Kitamura^{A)} Tadahide Totoki^{A)}, and Yuichi Nagasawa^{B)}

^{A)} Ion Beam Therapy Center, SAGA-HIMAT Foundation

^{B)} Mitsubishi Electric Corporation

Abstract

SAGA-HIMAT is a cancer therapy project with carbon ion beam, which is promoted by Saga prefecture with public private partnership. Designs of the accelerator and irradiation system have been started at beginning of 2010, installation of accelerator devices was from beginning of 2012, and first beam test was end of 2012. Required accelerator performances for therapy have been achieved such as maximum beam intensity of 10⁹ pps. After beam commissioning, we will start the treatment at the end of August 2013.

1. はじめに

炭素ビーム専用の重粒子線治療施設(九州国際重 粒子線がん治療センター(SAGA-HIMAT))を群馬 大学に続いて佐賀県鳥栖市において建築中である [1][2][3]。このプロジェクトのこれまでの重粒子線 プロジェクトと異なる最も特徴的なところは、佐賀 県がこのプロジェクトに対してイニシアチブを持ち ながらも、民間からの出資及び寄付、さらには個人 の寄付も広く募って建設費を確保するところにある。 これら多様な資金を利用出来るように医療を行う佐 賀国際重粒子線がん治療財団の他に、主に建物の建 設管理を行う九州重粒子線施設管理株式会社を設立 した。本計画では、事業費として 150 億円を見込ん でおり、これをどのように可能にするかはこの計画 のもっとも重要な点の一つである。又、治療患者に 関しては九州全域及び山口県から来ることを想定し て、広報活動に取り組んでいる。2012年度には福岡 県からも補助金をもらい、ますます九州全体の計画 という性格を強めている。建設場所は、九州新幹線 と長崎本線の新鳥栖駅のすぐ前で、さらにここ鳥栖 は南北及び東西に延びる高速道路の交わる所であり、 九州各地から来院するのに非常に便利な所である。

この計画では、患者さんからの治療費によって、 この施設で働くすべての人の人件費を含めて運営し ていく必要があり、この点が重粒子線治療施設では 初めての試みになる。そのため、想定したように治 療患者数を増加させる事が重要である。これまで、 九州大学、佐賀大学、久留米大学に寄付口座を作り、 医師が重粒子線の治療経験を持てるようにした。さ らにこれらの大学に粒子線外来を作って、患者の相 談にも当たっている。又、SAGA-HIMAT ではすべ て外来で治療を行うため、外部の病院と十分な協力 が出来る事は重要であり、近隣の病院含めて九州全 域で医療機能連携協定の締結を進めている。さらに 治療照射の仕方を規定するプロトコールを議論する 「重粒子線がん治療部位別腫瘍検討班」を臓器別に 9つ作っている。班長には外部の人になってもらい、 班員にも外部の人に入ってもらっていて、すでに7 つの班でプロトコールについて議論され、プロト コールの最終案がほぼかたまりつつある。

本講演ではこのプロジェクトの現状とビームテス ト結果について報告する。

2. 建設のこれまでの経過

施設の設計は 2009 年の初めに開始された。又、 2011年2月から開始された建屋の建設は予定どおり 2012年10月15日に竣工し、財団へ引き渡されてい る。装置に関しては 2012 年 1 月に搬入を初め、同 じ年の12月15日にはビーム試験を開始している。 その結果、2013年2月には放射線の施設検査にパス し、4 月には 2 つのエネルギー(290MeV/u, 400MeV/u)について2室4コースすべてにビームを 通し、加速器の調整に関してはいったん終了して、 照射系の試験を開始している。これと平行して、 SAGA-HIMAT 施設で治療照射を行うために必要な 情報システムの整備が進められた。1 つは病院情報 システム(HIS)であり、2013 年 3 月から設置を開始 し、6月からの患者相談受付開始に向けて準備をし、 5 月下旬に全体試験を経て、現在実稼働している。 又、放射線治療情報システム(RIS)に関しても同時期 に設置を開始し、HIS との接続試験を始め照射装置、 治療計画装置との接続試験を行っている。7 月に 入ってからは、RIS を接続した上での治療照射テス トに関しても行った。8月にはテスト用データを 使って治療システム全体を動作させ、システム全体 の運用テストを行い、実治療照射に備える予定であ る。ただし最初、治療は1室(水平コースと垂直 コースが利用出来る B 室)のみを使って前立腺だけ

[#] kanazawa-mitsu@saga-himat.jp

であり、照射条件は限定されている。装置の性能を すべて発揮して利用できるようになるのは 2014 年 度からの予定である。

3. ビーム試験

3.1 イオン源

イオン源は放医研にて開発された永久磁石のみを つかった 10GHz のマイクロ波を利用する ECR イオ ン源で、30kV の引出電圧で4荷の炭素イオンを取 り出す。SAGA-HIMAT のイオン源を製作するに当 たっては、同設計の群馬大学イオン源の運用経験に 基づいて制作されている。必要とされているビーム のピーク強度は200µA である。図1にイオン源直後 の偏向電磁石下流のファラデーカップで測定したス ペクトルであるが、4荷の炭素イオンが 300µA 弱の ビーム強度で得られている。

Figure 1: Beam current on faraday cup at downstream of bending magnet as a function of magnet current.

Table 1: Operational	parameters of ECRIS
----------------------	---------------------

Microwave	Frequency : 10.038 GHz Power : 260 W
Bias disk	25 V
Gas	CH ₄ 0.03 cc/min
Vacuum	ion source : 1.9×10 ⁻⁴ Pa (upstream of ECRIS) Einzel lins : 7.7×10 ⁻⁵ Pa
	(downstream of ECRIS)

図2は同じファラデーカップでの電流波形である。 このときの運転パラメータを表1に示すが、さらに ビーム強度を上げた運転もガス流量を増やすことに よって出来るが、その場合炭素が引出電極やセラ ミックスに付着する事により、放電を起こしやすく なると考えられる。そこで実際の運転では比較的ガ ス(メタンガス)の流量を絞って運転しているが、 必要なビーム強度を得ることが出来ている。この放 電をさらに起きにくくするには、引き出し電極部の 真空度を現在よりも改善すれば良く、次回のメンテ ナンスの時に改善したいと考えている。

Figure 2: Beam current of C^{4+} on faraday cup and current of extraction electrode. Pulse width is 50ms.

3.2 線形加速器

入射器としては初段に RFQ 型線形加速器、後段 には APF-IH 型線形加速器を使い、rf 周波数は両方 の線形加速器とも 200MHz にしている。2 つの線形 加速器間には小さな3連の空冷Qマグネットのみを 配置して、RFQ で加速されたビームがバンチしたま ま APF-IH に入るようにしている。電場分布の測定 及び調整は工場にて行い、調整後の RFQ 及び APF-IH 型線形加速器の Q 値はそれぞれ 7625 及び 11281 (設計値に対する割合はそれぞれ 63%及び 75%) で あった。図3には APF-IH の電場分布を調整した後 の値を設計値と共に示すが、ほぼ 1%以内で合わせ ることが出来ており、加速には十分な精度であると 考えられる。ビーム調整では RFQ と APF-IH の間に はビームを観測出来る物は何も無いので、RFQ は設 計値にセットし、APF-IH のパラメータを調整して 加速効率が大きくなるように調整した。

Figure 3: Tuned electric field of IH linac with R&D ones as a reference values. In both figures, horizontal values are number of acceleration gap. In left figure, vertical axis is deviation(%) from calculated values.

Figure 4: Accelerated beam currents as a function of acceleration voltage of IH linac and phase between RFQ and IH linac rf.

Figure 5: Accelerated beam current with IH linac.

図4はAPF-IHの電圧を徐々にあげ、各電圧値の 所でRFQとAPF-IH間の位相を変えてAPF-IH直後 のファラデーカップの電流値を測定した結果である。 この調整によりRFQとAPF-IHを通した加速効率と して79%が得られた。この値は放医研でのR&D機 での値80%と同等であり、線形加速器のビーム調整 は十分であると考えた。図5に加速されたビーム信 号を示すが、線形加速器に高周波電力を入れている 時間は500µ秒であるが、RFQの上流に設置された 静電チョッパーにより57µ秒幅のビームにされて線 形加速器で加速される。

3.3 シンクロトロン

入射器で加速された C^{4+} ビームは APF-IH 線形加速 器直下流に設置した、厚さ $50\mu g/cm^2$ の炭素荷電変換 膜で残りの2個の電子もはぎ取られて C^{6+} 状態で、 シンクロトロンに多重回入射される。

Figure 6: Horizontal COD during acceleration. Horizontal axis is timing(second) from master pulse.

Figure 7: Vertical COD during acceleration. Horizontal axis is timing(second) from master pulse.

入射ビーム幅は 57μ秒にして実効入射ターン数は 12 ターン程度に抑え、位相空間の中心付近にビーム を入れないようにしている。これはビーム取りだし を高周波で捕獲したまま加速して3次の共鳴に近づ けて取り出しているため、より大きく周波数を掃引 しなければ取り出せない部分にビームを入れないた めである。このようなビームの分布にすることで、 空間電荷効果を抑制する事にもなっている。表2に シンクロトロンのパターン運転に関する主要タイミ ングを示すが、ビーム入射後 1.17ms には高周波捕 獲を初め、1.6667ms の捕獲期間が終わってすぐ、磁 場を立ち上げて加速に移っている。

Table 2: Timings of the synchrotron operation

cycle period	3.0666 s
injection timing	32.1018 ms
(from master timing)	
rf capture timing	33.333 ms
rf capture period	1.6667 ms
field ramp timing	35 ms
field ramping period	575+2×50 ms
field smoothing period	50 ms
flat top period	1312 ms

Figure 8: Measured tune values during acceleration.

Figure 9: Charge in the ring, that is divided DCCT values with revolution frequency.

Figure 10: DCCT trace and extracted beam spill that was measured with faraday cup at the downstream of extraction septum magnet.

図 6,7 には COD 補正した後の水平方向と垂直方 向の値を示すが、どちらも高周波捕獲した直後から フラットトップまで 0.5mm 以下に補正できている。 補正前は水平方向で-20~20mm、垂直方向で-4~6mm あり、この COD 補正がビーム強度を上げることに 大きく寄与した。又、ベータートロン振動数の調整 をした結果を図 8 に示す(加速途中 400ms まで測 定)。図 9 にはこれらの調整をした後に DCCT で測 定したビーム電流の値から求めたリングに入ってい る電荷量を示す(入射からフラットトップまで)。 入射後に約 25%程度のビームロスがあるが、その後 は目立つロスは無い。この入射後のロスの割合は 日々の運転でビーム強度が変化してもほぼ一定の割 合になっている。

図 10 に遅いビーム取りだしのビームスピルとその時の DCCT の値を示す。取りだしにはv_x=5/3 共鳴を使い、ビームを捕獲したまま rf 周波数を掃引する 事により行っている。図から分かるように8割ほど リングのビームが無くなった所で取りだしの為の周 波数掃引を停止し、取りだしビームの運動量幅が広 がり過ぎるのを避けている。なお、この取り残され たビームは減速されて放射線の発生を防いでいる。

Figure 11: Frequency spectrum of extracted beam spill.

現在、ビームの取りだし効率(フラットトップにリ ングから無くなったビーム量に対して取り出された ビームの割合)は90%以上にする事が出来ている。 この結果取り出されたビーム強度はシンクロトロン の運転周期3秒での設計値である1.0×10⁹pps (particle per second)を達成出来ている。又、図11にはビーム スピルの周波数分布を示すが、180Hzの所にピーク が有りその他60Hz、240Hz付近にもピークが見える。 これらは電力周波数の3倍高調波、基本周波数、4 倍高調波に対応している。その他に200Hzを中心に して幅広の盛り上がりが見える。しかしながら偏向 電磁石電源及び四極電磁石電源の電流にはこれらの 周波数の所に特段のピークは見えず[4]、ビームリッ プルの改善は今後に残された課題である。

3.4 高エネルギー輸送系

シンクロトロンから各治療室までの輸送系を図 12 に示すが、3室とも水平ビームラインと垂直又は 45 度ラインがアイソセンターで交差するようになっ ている。この輸送系では、シンクロトロン直後の各 コース共通な所で運動量分散及びその微分をゼロに している。又、各治療室のアイソセンターでも運動 量分散及びその微分をゼロに設計している。さらに、 遅い取りだしではセパラトリクスが重なるように設 計し、取り出されたビームのエミッタンスが小さく、 かつビームがスピル内で動かないようにしているが、 それでも実際のビームは動きが残ってしまっている。 これを止めるために輸送系にパターン運転出来るス テアリング電磁石を水平と垂直共に一対ずつ設置し た。このステアリング電磁石の利用により、スピル 内でのビームの動きは全アイソセンターで 0.2mm 以 下に抑えることが出来ている。図 13 に B 治療室の 垂直ラインにビームを通した場合に、アイソセン ターでのビームの動きを測定した結果を示すが、補 正前には 0.2mm 程度動いていたが、ダイナミックな 補正をすることによって 0.1mm 以下にする事ができ ている。

4. 謝辞

加速器及び照射系の設計にあたっては放医研・物 理工学部の方々に議論に加わっていただいた事を感 謝いたします。又、群馬大学・重粒子線医学研究セ ンターの方々の協力に感謝いたします。本計画の施 設の建設は九州重粒子線施設管理株式会社が担当し ており、建設の資料等については甲斐慎一郎、嶋田 昭彦の両氏及び大成建設の山田隆則氏にお世話にな りました。又、公益財団法人・佐賀国際重粒子がん 治療財団の光武亨剛氏を始めとする財団の各位及び 佐賀県の健康福祉本部・粒子線治療普及グループの 各位のその熱心なサポートに感謝いたします。

参考文献

- [1] 九州国際重粒子線がん治療センター、事業計画 Ver.2.0, Jan, 29, 2010.
- [2] M.Endo, et al., SAGA-HIMAT (Heavy Ion Medical in Tosu), PTCOG49, May 2010.
- [3] M.Kanazawa, et al., SAGA-HIMAT PROJECT FOR CARBON ION RADIOTHERAPY, 加速器学会 2011.
- [4] C.Yamazaki, et al., Development of a Power Supply for Electromagnets of Heavy Ion Medical Accelerator, 加速器 学会 2013.

Figure 12: Beam transport lines with synchrotron and injector.

Figure 13: Position of beam centers during beam spill with and without dynamic orbit correction. Horizontal axis values are timing(second) from master pulse. Vertical is in mm.