アト秒かつテラワットレベルの XFEL パルスを生成する新手法の提案 A NEW SCHEME TO GENERATE A MULTI-TERAWATT AND ATTOSECOND XFEL PULSE

田中隆次

Takashi Tanaka* RIKEN SPring-8 Center

Abstract

A new scheme to upgrade the source performance of X-ray free electron lasers (XFEL) is proposed, which effectively compresses the radiation pulse, i.e., shortens the pulse length and enhances the peak power of radiation, by inducing a periodic current enhancement with a long-wavelength laser and applying a temporal shift between the X-ray and electron beams. Calculations show that a 10-keV X-ray pulse with the peak power of 6.6 TW and pulse length of 50 asec can be generated by applying this scheme to the SACLA facility.

1. はじめに

光をプローブに用いて未知の現象を探求するために は、その光を如何に小さく絞り込むことができるかが重 要なポイントとなる。即ちプローブに利用する光は、調 査する対象の空間的な大きさよりも小さい集光サイズ で、かつその現象が変化する典型的な時間スケールより も短いパルス幅を有していることが望ましい。一方、光 の不確定性によって、集光サイズやパルス幅を波長より も短くすることは理論的に不可能であって、このことが レーザー光の集光サイズやパルス幅の下限を決定する。

可視あるいは赤外などの長波長領域においては、レー ザーの集光サイズやパルス幅の極限値は、この理論的 限界に近い値が既に達成されている。即ち、1 ミクロン 以下の集光サイズで、かつ数フェムト秒程度のパルス幅 を有するレーザーは容易に利用可能である。一方、これ らよりも4桁程度波長の短い XFEL における状況は全 く異なり、これまでに達成されている集光サイズは50 nm、パルス幅は数フェムト秒であって、極限値である 1オングストロームや数100ゼプト秒からはほど遠い値 に留まっている。このうち集光性能については X 線集 光ミラーの精度向上によって着実に改善がなされてき ており、近い将来に数nm 程度の集光サイズが実現され る見込みである。一方、パルス幅については長波長領域 におけるパルス圧縮に相当する技術がX線領域には存 在しないため、その代替手段としてパルス幅を短縮す る手法がこれまでにいくつか提案されてきた^{[?]_[6]}。し かしながら、これらの手法ではレーザー発振に寄与す る有効電荷を削減することでパルス幅を短縮しており、 短パルス性能が必ずしもピークパワーの増強を意味す るわけではない。

本報告では、これらの手法とは異なり、パルス幅を短 縮するだけではなく、ピークパワーもこれに応じて増強 するための新たな手法^[7]を提案する。

2. 原理

初めに本手法の原理について説明する。Figure 1 に本 手法を適用する際の加速器レイアウトの模式図を示す。 通常の加速器機器に加えて、XFELパルス圧縮を可能 にする特殊なバンチ構造を有する電子ビームを生成す るために、2つの機器がアンジュレータ上流側に設置さ れている。

ーつ目は、XFEL パルス幅短縮のために提唱され^[1]、 LCLS で実際に運用されている "Slotted Foil"である。バ ンチ圧縮部(BC)に設置された金属薄膜で電子バンチ を散乱することによってエミッタンスを劣化させ、これ によってレーザー発振を抑制する。BC では、電子バン チの進行方向への位置座標 s と水平方向への位置座標 x に強い相関があるため、水平方向に2枚の金属薄膜を 互いに逆の方向から挿入し、バンチ中心のみでレーザー 発振が起こるような条件に設定することによって XFEL のパルス幅を制御することができる。ちなみに本手法で は、パルス幅を短縮するというよりもむしろ、レーザー 発振が起こる電子バンチ領域を明確に制限するために 用いられる。

二つ目は、Enhanced SASE (E-SASE) と呼ばれる手 法^[3]を適用するための長周期のアンジュレータと、そ の周期に対応する基本波長 λ_E をもつ長波長レーザー (E-SASE レーザー)を導入するためのシケイン及び、 その下流側に設置されるエネルギー変調を密度変調に 変換するための分散部である。これにより、電子バンチ にはピッチ λ_E で電流ピークが並ぶ、櫛状の電流分布が 形成される。

上記 2 つの過程を経た後の電子バンチの電流分布は 以下の式で表される。

$$I(s) = [I_o(s) + I_u(s)]E(s),$$

ここで $I_o(s)$ と $I_u(s)$ はそれぞれ BC 直後の電流分布を 表し、前者は薄膜による影響を受けることなくレーザー 発振に寄与する電子のもの、後者は薄膜によって散乱さ れ、発振には寄与しない電子のものである。BC におけ る水平ビームサイズは、圧縮のためのエネルギーチャー プに由来するものと、これ以外の固有のもの(エミッタ ンスやベータ関数、エネルギー幅などに依存)で決まる が、後者による寄与が前者に比べて無視できるほど小さ い場合、 $I_o(s)$ は矩形関数的な形状を持つ。実際にはそ のようなことはなく、これら固有のビームサイズによる

^{*} ztanaka@spring8.or.jp

Figure 1: Accelerator layout to realize the proposed pulse compression scheme.

影響を標準偏差 σ_f のガウシアンで近似すれば、次式で 計算できる。

$$I_o(s) = \frac{1}{\sqrt{2\pi}\sigma_f} \int_{s_1}^{s_2} I(s') \exp\left[-\frac{(s-s')^2}{2\sigma_f^2}\right] ds',$$

$$I_u(s) = I(s) - I_o(s),$$

ここで、 s_1 及び s_2 は薄膜のスリット開口を定義する水 平位置座標と相関する、電子の進行方向へ位置座標であ り、I(s)は薄膜が挿入されない場合の電流分布を示す。

E(s)は周期 λ_E を持つ周期関数であって、E-SASE に よる電流増強を表す。分散部における R_{56} が適切に設 定されている条件の下では、次式で与えられる^[3]。

$$E(s) = \sum_{j} \frac{eB}{1 + B^{1/e}} \frac{1}{1 + 16B^2[(s/\lambda_E) - (\theta/2\pi) - j]^2}$$

ここで、 $B = \Delta \gamma / \sigma_{\gamma}$ であり、 $\Delta \gamma$ は E-SASE レーザー によって電子バンチに誘起されるエネルギー変調の振 幅、 σ_{γ} は、電子バンチのスライスエネルギー幅(標準 偏差)、また e は自然対数の底である。位相パラメータ θ は電子バンチと E-SASE レーザーの時間ジッターを表 し、ショット毎に $-\pi$ から π の間で変動する。

これらの式を用いて、ピーク電流 3.5 kA、バンチ長 (標準偏差)40 fsecを持つ電子バンチに対して、各セク ション直後の電流分布を計算した。Figure 2(a) に、BC 直後の電流分布の計算値を示す。薄膜スリットの位置を $s_1 = -4.4 \ \mu m$ 及び $s_2 = 3.6 \ \mu m$ とし、 また $\sigma_f = 0.2$ μm と仮定した。元のガウシアンプロファイルと比較し て、レーザー発振に寄与する電子の時間窓(黒線)はよ り明確に制限されていることがわかる。しかしながらそ の境界には、パラメータ σ_f で規定されるフリンジ領域 が存在する。従って、 σ_f が長い場合には、レーザー発 振領域の境界が明確にならず、薄膜スリットの効果は失 われる。本報告では説明を省略するが、これはメインパ ルスのコントラスト低下という光源性能の劣化を引き 起こす^[7]。従って、本手法を効果的に適用するために は、 σ_f が可能な限り短くなるようにパラメータを調整 する必要がある。これまでの検討から、 $\sigma_f = 0.2$ は十 分に達成可能な値であることを確認している。

Figure 2(b) には、E-SASE セクション直後の電流分布 を示す。ここでは、 $\lambda_E = 800 \text{ nm}$ 、 $B = 5 \text{ 及び } \theta = 0$ を仮定した。約5倍に増強されたピーク電流が 800 nm のピッチで配置した、櫛の歯状の電流分布が形成され ていることが分かる。B = 5を達成するために必要な E-SASE レーザーのパワーは、8 GeV のエネルギーと 1×10^{-4} のスライスエネルギー幅を持つ電子ビームに ついては、約1GW と計算される。このピークパワーは パルス長として1 psec を仮定した場合、1 mJ というパ ルスエネルギーに相当するが、これは既存のレーザー技 術を利用すれば十分に実現可能な値である。1 psec とい う比較的長い(電子バンチ長よりもずっと長い)パルス 長を仮定する理由は、電子バンチとレーザーパルスの時 間同期の精度を緩和するためである。

Figure 2: Calculated current distributions after (a) the bunch compressor with the slotted foil and (b) ESASE sections.

次に、櫛の歯状の電流分布を持つ電子バンチから単 ーのX線パルスを生成し、かつそれを増幅する手法を Fig.3を用いて説明する。各増幅過程を示す番号はFig. 1に示したものと対応するので適宜参照されたい。 まず、過程(i) では、通常の SASE プロセスによって、 櫛の歯状の電流分布を反映した、間隔 λ_E の X 線パルス トレインが生成される。この過程におけるアンジュレー タの長さは、各 X 線パルスが飽和することなく、従っ て電子バンチの品質が大きく劣化することが無いよう に調整しておく。

次に過程(ii)において、磁場シケインによって電子バ ンチをX線から分離する。そして、セルフシーディン グの場合のような分光器を設置する代わりに、複数のミ ラーを組み合わせた光学シケインによって、磁場シケイ ンを通過する電子バンチよりも大きな遅延をX線に与 える。即ち、X線パルストレインを電子バンチから相対 的に後方へシフトさせるが、その距離は $(N_{pk}-1)\lambda_E$ と 等しくなるように各シケインを制御する。ここで、 N_{pk} は電子バンチのレーザー発振領域内部に存在する電流 ピークの数である。この条件は、X線パルストレインの うちの先頭のパルス(ターゲットパルス)が発振領域内 の最後尾に位置する電流ピーク(テイルピーク)と同期 することを意味する。

この後の過程(iii)において、電子バンチとX線はシ ケイン下流側のアンジュレータに入射される。過程(i) で誘起されたマイクロバンチ成分は電子バンチがシケ インを通過することで消失しているが、テイルピーク ではターゲットパルスをシード光としたレーザー増幅 が直ちに起こる。一方それ以外の電流ピークでは通常 の SASE プロセスが支配的であるため、レーザー増幅 に至るには十分な長さのアンジュレータが必要である。 また、ターゲットパルス以外のX線パルスは、電子バ ンチの発振領域に存在しないため、増幅されない。従っ て、この過程におけるアンジュレータの長さを適切に調 整することによって、ターゲットパルスのみを選択的に 増幅することができる。

ターゲットパルスがテイルピークにおいて十分に増

幅された後の過程 (iv) では、磁場シケインによって電子 パンチに遅延を与え、X 線パルスを電子バンチの前方 に距離 λ_E だけシフトさせる。するとターゲットパルス は、テイルピークの一つ前方の電流ピークに位置する。 この電流ピークでは、過程 (i) 以外では X 線の増幅に利 用されておらず、その品質は劣化していない (即ち、エ ネルギー幅は増大していない) ために、ターゲットパル スは継続的に増幅される。このように品質劣化が起こる 前の電流ピークのことを、今後はフレッシュピークと呼 ぶ¹。

このようにターゲットパルスはフレッシュピークに よって増幅されるが、これよりも一つ後方に位置する X 線パルスもテイルピークに達する。しかしながら、テイ ルピークはターゲットパルスを増幅することによって既 にエネルギー幅が増大している(即ち既にフレッシュで はない)ために、増幅率は大きくない。結局この増幅過 程においても、ターゲットパルスのみが選択的に増幅さ れる。

上記の過程(iv)を電子バンチの発振領域の先頭のピーク(ヘッドピーク)にターゲットパルスが達するまで繰り返すことによって、同パルスのパワーは飛躍的に増強される。もし、この時点でアンジュレータの長さ(セグメント数)に余裕がある場合は、ターゲットパルスを再度テイルピークにシフトさせることによって増幅を継続することができる。

3. 適用例

上記で解説した手法を適用することで期待されるレー ザー光源性能について評価するために、Fig. 2(b)で示し た電流分布を持つ電子バンチについて FEL シミュレー ションを行った。電子バンチのエネルギーを 8 GeV、規 格化エミッタンスを 0.7 mm·mrad、エネルギー幅を 10⁻⁴ とし、周期長 18 mm、偏向定数 2.18 のアンジュレータ に入射されると仮定した。この場合の光子エネルギー は 10 keV であり、本手法を適用しない場合の SASE 飽 和パワーは約 20 GW、パルス幅は約 20 fsec と計算さ れる。

磁場シケイン及び光学シケインを含んだアンジュレー タレイアウトの模式図を Fig. 4 に示す。ここで、各アン ジュレータセグメントの全長は 5 m で、これらが SACLA アンジュレータラインと同様 1.15 m の間隔で設置され ると仮定している。また、光学シケインは 2 カ所に設 置され、これ以外のアンジュレータのセグメント総数を 24 台と仮定している。これは SACLA 光源棟に設置可 能なアンジュレータの総数 26 を想定した値である。

最初の4台が過程(i)に相当し、その下流に設置され た光学シケインが過程(ii)に相当する。シケイン通過後、 ターゲットパルスは2台のセグメントにおいて選択的 に増幅され、電子バンチに磁場シケインによって遅延を 与えることによって、一つ前方の電流ピークに送られて 増幅が継続する。ターゲットパルスがヘッドピークに到 達する15セグメントまでこの過程が継続した後、光学 シケインによって再度テイルピークに送られる。

全ての計算は SPring-8 において開発された FEL シ ミュレーションコード SIMPLEX^[8] で行った。ちなみに E-SASE プロセスにおけるエネルギー変調の誘起によっ

¹fresh=劣化していない、新鮮な、と言う意味。

Figure 5: X-ray pulse temporal structures calculated at the ends of different undulator segments.

て、電流ピークにおけるエネルギー幅は増大しているため、シミュレーションはその効果も考慮している。

シミュレーション結果を、4番目、7番目、10番目、及 び24番目(最終)のセグメント出口における X線レー ザーの時間構造として、Figure 5 に示す。4 番目のセグ メント出口では、電流ピークの位置において何個かの X 線パルスが確認できる。これらのうちで、矢印によって 示されたターゲットパルスが、シケインパラメータを適 切に調整することによって選択的に増幅される。この結 果、10番目のセグメントの出口においてほぼ単一のX 線パルスが形成される。このセグメントまで、ターゲッ トパルスは指数関数的に増幅され、ピークパワーはほ ぼ 100 GW に達する。この値は、電流が 17 kA まで増 強された場合の SASE プロセスで得られる飽和パワー に相当する。従って、通常はこの値を超えてレーザーパ ワーが大きく増加することは期待できない。しかしなが ら本手法では、ターゲットパルスをフレッシュピークに よって次々に増幅することができるため、ピークパワー は格段に増強する。この結果、最終的に24番目のセグ メント出口において、ピークパワー 6.6 TW、パルス幅 53 asec の X 線パルスが生成される。通常の SASE プロ セスでは 20 GW で 20 fsec の X 線パルスが得られるこ とを考慮すれば、約300倍の圧縮比でパルス圧縮がな

されていることがわかる。

4. 実用化に向けて

本手法は考案されたばかりであり、実際にユーザーに 供給するために SACLA などの XFEL 施設へ実装する ためには、様々な R&D が必要である。例えば、磁場シ ケインはほぼセグメント毎に必要となるため、よりコン パクトな設計が求められる。このため永久磁石の利用を 念頭に置いた R&D が必要である。また、レーザー発振 領域を明確に規定するためには、BC におけるビームパ ラメータを最適化する必要がある。さらに、E-SASE に 関連したパラメータについても慎重な検討が必要であ り、特に本報告では考慮に入れていない、増強された電 流ピークによる空間分布の影響については定量的な評 価が必要である。これらに加えて、Fig. 5(d) に見られ るサテライトパルスの除去方法についても別途検討が 必要である。

参考文献

 P. Emma, K. Bane, M. Cornacchia, Z. Huang, H. Schlarb, G. Stupakov, and D. Walz, Phys. Rev. Lett. 92, 074801 (2004).

- [2] P. Emma, Z. Huang, and M. Borland, in Proceedings of FEL 2004 (Trieste, Italy, 2004), p. 333.
- [3] A. A. Zholents, Phys. Rev. ST Accel. Beams 8, 040701 (2005).
- [4] E. L. Saldin, E. A. Schneidmiller, and M.V. Yurkov, Phys. Rev. ST Accel. Beams 9, 050702 (2006).
- [5] W. M. Fawley, Nucl. Instrum. Methods Phys. Res., Sect. A 593, 111 (2008).
- [6] Y. Ding, Z. Huang, D. Ratner, P. Bucksbaum, H. Merdji, Phys. Rev. ST Accel. Beams 12, 060703 (2009).
- [7] T. Tanaka, Phys. Rev. Lett. 110, 084801 (2013)
- [8] T. Tanaka, in Proceedings of FEL 2004 (Trieste, Italy, 2004), p. 435.