高インピーダンス金属磁性体コアの研究 STUDY OF HIGH IMPEDANCE MAGNETIC ALLOY CORE

野村昌弘^{#, A)}, 山本昌亘^{A)}, 島田太平^{A)}, 田村文彦^{A)},

大森千広^{B)}, 戸田信^{B)}, 長谷川豪志^{B)}, 原圭吾^{B)}, 吉井正人^{B)},

シュナーゼ アレクサンダー^{C)}

Masahiro Nomura^{#, A)}, Masanobu Yamamoto^{A)}, Taihei Shimada^{A)}, Fumihiko Tamura^{A)},

Chihiro Ohmori^{B)}, Makoto Toda^{B)}, Katsushi Hasegawa^{B)}, Keigo Hara^{B)}, Masahito Yoshii^{B)},

Alexander Schnase^{C)}

^{A)} JAEA J-PARC Center, ^{B)} KEK J-PARC Center, ^{C)} GSI

Abstract

J-PARC 3 GeV Rapid Cycling Synchrotron (RCS) and Main Ring (MR) employ RF cavities loaded with Magnetic Alloy (MA) cores to generate a high field gradient. The MA core shunt impedance R_p is a key parameter to increase the beam power. To achieve the high shunt impedance R_p , we increased the filling factor by a strong winding tension. As a result, the shunt impedance R_p was reduced in despite of the filling factor increase because the strong winding tension deteriorates the MA core magnetic properties significantly. On the other hand, the MA core with thin ribbons and the MA core that is magnetized by the rotation process show the high permeability in the accelerating frequency region, and those MA cores show the high shunt impedance R_p consequently.

1. 序

J-PARC シンクロトロン(RCS、MR)では、高い加速電圧を発生させる為に、金属磁性体コア(日立金属 社製 FINEMET コア)を装填した高周波加速空胴を採 用している。ユーザーの要望に応え、更にハイパ ワーのビームを供給する為には、金属磁性体コアの シャントインピーダンス R_p を高め、より高い加速電 圧を発生させる事が重要である。

本稿では、先ず初めに高い加速電圧を発生させる 為の鍵となる FINEMET コアについて説明を行い、 次に、シャントインピーダンス R_p とコアの磁気特性 (複素比透磁率 μ)との関係を示し、その後、シャント インピーダンス R_p を高める方法について議論する。

ここでの議論は $+ \sqrt{r} + \sqrt$

2. FINEMET $\neg 7$

FINEMET は日立金属吉沢氏らにより開発された 高性能 Fe(鉄)基軟磁性材料である[2]。FINEMET の 一番の特長は、結晶粒径をナノオーダーまで小さく することにより軟磁気特性を飛躍的に向上させた点 である。FINEMET はこの他にも多くの特長が有り、 J-PARC シンクロトロンの高周波加速空胴のコアに 関係する特長としては、

- 飽和磁束密度が高く(~1.2 [T])、高い加速電圧を 発生させることができる。
- Q 値が~0.6 と低く、空胴の広帯域化により加速周波数変化に追従させるためのチューニング ループが不要である。
- コアをカットすることにより Q 値を高くすることができる。MR 用カットコアの Q 値は約 22。
- 磁歪定数が小さく(< 10⁻⁶)、含浸による磁気特性の劣化が少ない。
- リボンを巻くことによりコア製造を行うので、 加速器用の大型コアの製造が可能である。

等が挙げられる。

次に、FINEMET コアの製造過程を簡単に示す[3]。 コアの製造は先ず、単ロール法による超急冷により アモルファスの金属リボンの製造から始まる。J-PARC で使用するコアには層間絶縁を保つ為にこの アモルファス金属リボンの片面に約 2µm 厚の SiO2 を塗布している。次に、このアモルファス金属リボ ンをコア巻機によりコアの形状に整形し、その後熱 処理によりナノオーダーの結晶を形成させることで 磁気特性を向上させている。J-PARC では冷却方式 として水による直接冷却方式を採用しているので、 完成後のコアの外側には防錆コーティングを施して いる。

最後に、J-PARC で使用しているコアの形状について述べる。RCS 用が内径 375mm、外径 850mm、幅 35mm であり、MR 用は内径 245mm、外径 800mm、幅 35mm である。共にリボン板厚は 18μm である。重量は RCS 用、MR 用ともに約 100kg である。また、現在開発中の MR 用の高インピーダンス

[#] masahiro.nomura@j-parc.jp

コアは、内外径は現状と同じで、幅は 25mm、リボン板厚は 13µm である。防錆コーティング前の RCS 用のコアの写真を Fig. 1 に示す。

Figure 1: Photograph of FINEMET core for RCS.

シャントインピーダンス R_pとコア複素 比透磁率µの関係

コアの複素比透磁率µを以下に示す。

$$\mu = \mu_S' - i\mu_S'' \tag{1}$$

実数部は比透磁率を表し、虚数部は抵抗成分、損失 を表している。また、添字 s は直列回路(Series circuit)を意味している。この複素比透磁率 μ とシャ ントインピーダンス R_p とは以下の関係がある。

$$R_{p} = \mu_{0} \left(\mu_{p}^{\prime} Q f \right) t \cdot \ln \left(\frac{b}{a} \right) \cdot P_{f}$$
$$= \mu_{0} \frac{\left(\mu_{s}^{\prime 2} + \mu_{s}^{\prime \prime 2} \right)}{\mu_{s}^{\prime \prime}} f \cdot t \cdot \ln \left(\frac{b}{a} \right) \cdot P_{f}$$
(2)

$$Q = \frac{\mu'_{s}}{\mu''_{s}} = \frac{\mu''_{p}}{\mu'_{p}}$$
(3)

 μ_0 は真空の透磁率、tはコアの厚さ、 $a \ge b$ はコアの 内外径、 P_f は占積率(Packing factor)を表している。 $\mu'_p Q f$ はシャントインピーダンス R_p からコアの形状 や占積率の違いを除いたシャントインピーダンス R_p に比例するコアの磁気的特性を表す量である。

式(2)から、比透磁率 μ'_{s} を大きくすることにより シャントインピーダンス R_{p} を大きくできる事は明ら かである。抵抗成分 μ''_{s} に関しては μ'_{s} と μ''_{s} との大小関 係によりシャントインピーダンス R_{p} への影響は異な る。

$$\frac{\partial R_p}{\partial \mu_S^{\prime\prime}} = \mu_0 \left[1 - \left(\frac{\mu_S^{\prime}}{\mu_S^{\prime\prime}} \right)^2 \right] f \cdot t \cdot \ln\left(\frac{b}{a} \right) \cdot P_f$$
$$= \mu_0 [1 - Q^2] f \cdot t \cdot \ln\left(\frac{b}{a} \right) \cdot P_f \tag{4}$$

式(4)より、 μ'_{S} が μ''_{S} より大きいQ > 1の領域では、抵抗成分 μ''_{S} を小さくすることによりシャントインピーダンス R_{p} は大きくでき、逆に μ'_{S} が μ''_{S} より小さいQ < 1の領域では、抵抗成分 μ''_{S} を大きくすることによりシャントインピーダンス R_{p} は大きくできる事が分かる。

RCS の RF 周波数は、 $0.94 \sim 1.67$ MHz (h = 2)、 $1.88 \sim 3.34$ MHz (h = 4)、MR は $1.67 \sim 1.72$ MHz (h = 9)であ り、これらの加速周波数領域では μ'_{s} が μ''_{s} より小さい Q < 1 の領域なので、比透磁率 μ'_{s} は当然であるが、 抵抗成分 μ''_{s} も大きくしたほうが高いシャントイン ピーダンス R_{p} を得ることができる。

高いシャントインピーダンス R_pを得る ために

4.1 占積率

式(2)からも明らかなように、占積率を上げること によりシャントインピーダンス *R*_pを大きくする事が できる。ここでは、コア巻きのテンションを強くし 占積率を上げた場合についての議論を行う。

RCS 用コアの開発段階ではテンションを変えてコ アの製作を行った。その結果から強いテンションと 弱いテンションで巻いた RCS 用コアのシャントイ ンピーダンス *R_p*を Fig. 2 に示す。コア巻きのテン ションを強くすることにより占積率は約 8%程度高 くなったが逆にシャントインピーダンス *R_p*は低下し た[4]。

Figure 2: Frequency dependence of shunt impedance R_p . The black and red lines show the shunt impedance R_p of a low and high winding tension core, respectively.

Fig. 3 に Fig. 2 で示したコアの複素比透磁率µを示 す。コアの磁気特性が劣化しているのが分かる。原 因は、コア巻きテンションを強くしたことにより発 生した残留応力によるものと考えられる。残留応力 がコアの磁気特性に強い影響を与える事はよく知ら れている。

Fig. 2 と Fig. 3 から、RCS 及び MR の加速周波数 である 0.9~3.3 MHz の周波数領域では強いテンショ

ンのコアのシャントインピーダンス *R*_pは主に抵抗成 分µ''の低下の影響で低くなっていることが分かる。 以上の様に残留応力の影響は大きく、コア巻きテ ンションの強度を高めて占積率を上げてもシャント インピーダンス *R*_pを高くすることはできなかった。 現状では、残留応力を抑える為にコア巻きのテン

ションを弱めてコアの製作を行っている。

Figure 3: Complex relative permeability of low winding tension core and high winding tension core. The solid and broken lines show the real and imaginary part of the complex relative permeability, respectively.

4.2 リボン板厚

このリボン板厚と次節で議論する磁化過程につい てが現在開発中の MR 用高インピーダンスコアの主 な開発項目である。

リボン板厚を薄くすることにより渦電流の影響は 小さくなり、Q > 1の低周波数領域では損失が低減 し、シャントインピーダンス R_p が高くなる。一方、 Q < 1の RCS 及び MR の加速周波数領域では、リボ ン板厚を薄くすることにより、高い周波数領域まで 透磁率を延ばすことができるようになり、高いシャ ントインピーダンス R_n が得られる事が期待できる。

Fig. 4 と Fig. 5 にリ^ボン板厚 18µm の RCS 用コア と 13µm の MR 用コアの $\mu'_p Qf$ 及び複素比透磁率 μc 示す。RCS 用のリボン板厚 18µm のコアの厚さは 35mm、MR 用の 13µm のコアの厚さは 25mm なので、 形状の違いを取り除く為にシャントインピーダンス R_p の代わりに $\mu'_p Qf$ で比較を行った。Fig. 4 から明ら かなように、リボン板厚 13µm のコアの $\mu'_p Qf$ の方が 高くなっている。

理論的には周波数が低い領域ほどリボン板厚の影響は少なくなり、リボン板厚の差は無くなるはずである。しかし、Fig. 5 では低い周波数領域でもリボン板厚 13µm のコアの複素比透磁率µが高くなっている。リボン板厚が薄いことにより残留応力が弱く磁気特性の劣化が少ない可能性等が考えられるが、詳細は現在検討中である。RCS 及び MR の加速周波数領域である高周波側では確かにリボン板厚が薄い

ことにより複素比透磁率µが高周波側に伸びており、 その結果高いµ'₂Qfを得ることができている。

Figure 4: Frequency dependence of $\mu'_p Q f$ for ribbon thickness of 13 and 18 µm.

Figure 5: Frequency dependence of complex relative permeability for ribbon thickness of 13 and 18 μ m. The solid and broken lines show the real and imaginary part of complex relative permeability, respectively.

4.3 磁化過程

高い周波数領域まで透磁率を延ばす別の方法とし て磁化過程を磁化回転によるものとする方法がある [5, 6]。磁化過程には磁壁移動によるものと磁化回転 によるものの2種類がある。磁壁移動による磁化過 程は、高い周波数領域では渦電流により高周波の磁 界の変化についていけず透磁率が低下すると考えら れている[7]。そこで、磁化過程を主に磁化回転とす ることにより、低い周波数領域では透磁率は下がる ものの RCS 及び MR の加速周波数領域では高い透 磁率を保つことができると期待される。また、磁化 回転による磁化過程では抵抗成分 μ''_{S} が小さいと言う 特徴もある[8]。 コアの磁化過程が主に磁化回転によるものとする には、結晶の磁化容易軸を印加される磁場に対して 垂直方向、つまりリボン幅方向に異方性を持たせな ければならない。異方性を持たせる方法としては、 材質を塑性変形させることにより誘導する方法(ク リープ誘導磁気異方性)[8]、磁場中熱処理により誘 導する方法等がある。日立金属では既に磁場中熱処 理による小型コアを製作し所定の性能を出している [6]。しかし、日立金属では大型コアの磁場中熱処理 を行える設備が無い。そこで、J-PARC では大型コ アの磁場中熱処理ができる炉及び電磁石等の設備を J-PARC サイトに用意し我々で大型コアの磁場中熱 処理行った。

熱処理中に磁場印加を行った MR 用コア(FT3L)と 磁場印加を行わなかった MR 用コア(FT3M)との複素 比透磁率 μ を Fig. 6 に示す。確かに、低い周波数領 域では FT3L の比透磁率 μ'_s の方が低いが、RCS 及び MR の加速周波数領域では比透磁率 μ'_s は高い値を維 持している。また、FT3L では磁化回転の特徴であ る抵抗成分 μ''_s が小さい値となっている。

Figure 6: Frequency dependence of complex relative permeability for FT3M 13 μ m core and FT3L 13 μ m core. The solid and broken lines show the real and imaginary part of complex relative permeability, respectively.

Fig. 7 に FT3M(リボン板厚 18µm の RCS 用とリボ ン板厚 13µm の MR 用)と FT3L(リボン板厚 13µm の MR 用)の $\mu'_p Qf$ を比較の為に示す。低い周波数領域 で FT3L の $\mu'_p Qf$ が高いのは、比透磁率 μ'_s が低いが抵 抗成分 μ''_s がより低いことによるものであり、RCS 及 び MR の加速周波数領域で FT3L の $\mu'_p Qf$ が高いのは、 主に比透磁率 μ'_s が高いことによるものである。

磁場中熱処理に関しては、今回はµµQfを高める為 に磁場強度の最適化を行った。今後は、磁場印加時 間や熱処理の温度パターン等のパラメータの最適化 も行う予定である。

Figure 7: Frequency dependence of $\mu'_p Qf$ for FT3M 18 μ m core, FT3M 13 μ m core, and FT3L 13 μ m core.

5. まとめ

高いシャントインピーダンス R,を達成するために、 コア巻きテンションを強くし占積率を高める方法、 リボン板厚を薄くする方法、及び磁化過程を主に磁 化回転にする方法について考察した。

占積率を高める方法については、コア巻きテンションの強度を高めて占積率を上げても残留応力によると思われる磁気特性の劣化が大きく、シャントインピーダンス R_oを高くすることはできなかった。

リボン板厚を薄くする方法、及び磁化過程を主に 磁化回転にする方法については、RCS 及び MR の加 速周波数領域まで高い透磁率を維持することができ シャントインピーダンス *R*_pを高められる事が確かめ られた。

6. 謝辞

この FINEMET コアの研究を行うにあたり、(株) 日立金属の方々、特に小倉さんには非常に有益な議 論をして下さった事に感謝いたします。

参考文献

- [1] Y. Mori et. al., Proc. of EPAC'98, p299-301
- [2] Y.Yoshizawa, S. Oguma, and K. Yamauchi; J. Appl. Phys., 64, 6044 (1988).
- [3] http://www.hitachi-metals.co.jp/products/elec/tel/pdf/hlfm9-e.pdf
- [4] M. Nomura et al., Proc. of IPAC13, p2747-2749
- [5] 吉沢克仁,山内清隆:日本応用磁気学会誌, 13, 231 (1989) 3L
- [6] 吉沢克仁,森春幸,荒川俊介,山内清隆:日本応用磁気 学会誌, 19,457 (1995) 3S
- [7] 小笠原宏 その他: http://hdl.handle.net/10069/24362
- [8] 柳井武志: http://hdl.handle.net/10069/6921