東北大・核理研の加速器の現状

神藤勝啓¹、栗原亮、柴崎義信、高橋重伸、田中拓海、七尾晶士、濱広幸、日出富士雄、宮本篤、武藤正勝 東北大学大学院理学研究科附属原子核理学研究施設

〒982-0826宮城県仙台市太白区三神峯1-2-1

概要

東北大・核理研はライナックとストレッチャーブ ースターリングの2つの加速器を有する。これらの 加速器について2000年度の状況を報告する。

1. はじめに

東北大・核理研では、1967年に運転開始以来、今年で35年目を迎えるライナックと1997年10月より運転を開始したストレッチャーブースターリング(STBリング)の2つの加速器が稼動している。この2つの加速器は、教官3名、技官5名、大学院生2名の計10名によって運転・維持・研究されている。

近年のライナックの主な使用目的は、RI 照射実験 のビーム源、原子核実験を行うための STB リングへ の入射器、コヒーレント放射実験などのパルスビー ム実験のためのビーム源としての3つの役割を果た している。これらの実験のためにライナックは年間 2000時間以上の運転を行っている。本稿では、2000 年度の運転状況、老朽化に対する諸機器の更新、加 速器研究の状況などについて報告する。

2. 運転状況

2.1 運転の概要

核理研には、電子ライナックとストレッチャーブ ースターリングの2つの加速器が図1のように配置 されている。ライナックの20本の加速管は5台のク ライストロンによって、1台あたり4本の加速管が 駆動されている。第1実験室で行われる実験の場合 には、前半の8本の加速管を用いてビーム加速を行 い、実験室へビームを供給している。150 MeV 以上 の高エネルギービームを用いた第2実験室で行われ る実験の場合には、4~5台のクライストロンを用 いて、第2実験室へビームを供給している。

ライナックの運転時のパラメータについて第1表に 示す。実験の用途に合わせて、第1実験室へはビー ムエネルギー20~60 MeV、パルス幅3 µs、繰り返し 300 pps のビーム、第2実験室へはビームエネルギー 150~200 MeV、パルス幅1~3 µs、繰り返しはブース ター運転時の数10秒に1回の場合からストレッチャ 一運転時の最大300 Hz でビームを供給している。

第1表:ライナックの運転パラメータ

	第1実験室	第2実験室		
実験種類	RI照射	原子核・加速器・放射光		
ビームエネルギー	$2~0\sim 6~0~M\mathrm{e}\mathrm{V}$	$1 5 0 \sim 2 0 0$ MeV		
ビーム幅	3 μs	最大3µ s		
繰り返し	300 pps	最大 300 pps		

2.2 共同利用の状況

第2表に最近のマシンタイムの実施状況を示す^[1]。 '95年度から'98年度まで第2実験室は STB リングの 建設及びコミッショニングのため、ユーザー利用は 第1実験室で行われる RI 照射実験のみであった。中 性子実験については、STB リング建設のためのシャ ットダウン時に終了した。

'99年度以降、ユーザー実験のための第2実験室へのビーム供給を再開し、現在年間2,000時間以上の運転を行っている。共同利用実験参加者数も、学内学外合わせて年間100人を超えている。今後も運転時間は増加する傾向にあり、STBリング建設以前の200シフト(=2,400時間)以上の運転を実施していくことが予想される。

¹ E-mail: shinto@lns.tohoku.ac.jp

第2表:マシンタイム実施状況

(単位:シフト, 1シフト=12時間)

年度	原子核	中性子	RI	その他	合計シフト数
1991	144	28	37	40	249
1992	108	21	37	39	205
1993	126	22	33	58	239
1994	65	10	28	29	132
1995			16		16
1996			22		22
1997			21		21
1998			27		27
1999	65		28	47	140
2000	126		29	33	188

2.3 マシントラブル

ライナック及び施設の老朽化が進行しているため、 様々な箇所でマシントラブルが生じている。

ライナック関係では、プリバンチャーの移相器の 故障、ライナック加速管出口のスリット(SDⅡ-X) やパルス実験用コースのアナライザースリット(SA Ⅱ)が摩耗による機械的な故障や、クライストロン パルサー2号機(KP#2)のフォーカスコイル電源の トラブルや KP#4内の変圧器1次側導入端子の炭化、 ダイオードスタックの破損による整流回路の故障な ど電気的な故障などがあった。これらの殆どは既に 復旧済みであるが、SAII については、今年度スリッ トー式を新たに製作する予定である。ライナック及 び実験室へのビーム輸送ラインには、25台のイオン ポンプを設置しているが、放射線によって数本の高 圧ケーブルが不良になったので交換した。また、イ オンポンプ本体も1台故障したため、今年度初頭に 交換を行った。その他に大きなトラブルとして、KP#4 のクライストロン本体の破損もあった。このクライ ストロンは、運転時間が約3.000時間と核理研ではか なり短い時間しか使用をしていなかったのであるが、 フィラメントの断線が原因と思われる。

施設については、ライナック本体室の非常用イン ターロックスイッチ回路の一部が地絡した。早急に 復旧した。

リング関係では、一昨年9月に原子核実験のγ線取 り出し用ポートの付いた真空チェンバーを新たに製 作・設置したが、そのチェンバーに製作不良があっ たため、昨年8月に改修工事を行った。また、放射線 によるイオンポンプ電源や高圧ケーブル、ビームモ ニターのリミットセンサー部回路素子の破損なども あったが、加速器のスタディを進めていった結果、 損失ビームによる放射線量を軽減出来たため、以前 に比べて機器の破損は格段に減少している。

3.機器の更新

3.1 ライナック冷却塔の更新^[2]

建設以来30年余りの長期にわたり使用してきたラ イナック冷却系の冷却塔は昨年8月中旬から約1ヶ月 かけて更新設置工事を行われた。またこの工事に伴 い、冷却塔水系の主ヘッダー往還配管の洗浄及びク ライストロン変調器の冷却水配管の交換を行った。 冷却塔の冷却能力は、これまでの320冷却トンから 400冷却トン(200冷却トンを2基接続)になり、新た に凍結防止ヒーター、水位警報、導電率ブロー装置、 薬品注入装置の備わった冷却塔に更新された。現在 は、冷却塔の水温は22±1 ℃、導電率は500 µS/cm 以 下で運転されている。

3.2 ライナック制御系の更新

昨年度よりライナック制御系には、高エネルギー 加速器研究機構と東北大・核理研と核融合科学研究 所とで共同開発されてきた制御システムソフトウェ ア「COACK」を導入した。このソフトウェアで、核 理研ライナック5本のクライストロンパルサーの電 圧制御、加速管20本のRF出力エンベロープのモニタ ー、ビームロスモニター、エネルギー分析電磁石磁 場のモニター、スクリーンモニターの制御などを行 っている。ポスター発表「東北大学リニアック制御 系改造」(2P-16)^[3]で詳しく報告する。

4. 加速器研究の状況

4.1 STB リングのレベル測量

長期間にわたって、ビーム停止時には STB リング のレベルの測量が行われている。この結果について は、ポスター発表「STB リングのレベル測量」 (2P-30)^[4]で詳しく報告する。

4.2 STB リングでのビーム実験

昨年度は STB リングを用いた1.2 GeV 加速実験に 多くの時間が費やされた。ライナックから、200 MeV のビームエネルギー、約1%のエネルギー幅、 1.5 μs のパルス幅、水平及び垂直とも約300 nmrad のエミッ タンスのビームを入射している。

STB リングに入射されたビームは1.1 秒で最大1.2 GeV まで加速する事が可能であり、加速エネルギー はこの間で任意に決めることが可能である。また、 トップエネルギーでのビーム蓄積時間もトランスの 容量内で任意に決めることが可能である。

周回ビームのチューン測定には図2に示すような ストリップライン型電極を用いたチューン測定を行 っている。核理研では、4つの電極のうち、対角の 2つの電極に外部から任意波形発生器を用いて0.5~ 2 MHz の白色ノイズ(信号)がアンプを介した後に、 互いを逆位相にしてそれぞれの電極に印加されて、 周回ビームに擾乱を与える。残りの2つの電極より 信号をピックアップして、2つの信号の差を取り、 スペクトラムアナライザーで、チューンの時間変化 を測定している。対角の電極の差信号で測定を行っ ているので、水平・垂直の両方のチューンを同時に 観測出来る。

図2:STBリングでのストリップライン型電極を 用いたチューン測定システム及びチューン測定結果

ライナックからの入射ビームのチューンは、水平 垂直それぞれ(3.24, 1.21)であった。またクロマテ ィシティを測定した結果は、水平及び垂直方向でそ れぞれ(~-5.5, ~-4.7)であった。STBリングには、 取り出し用の6極電磁石以外には6極電磁石が設置 されていないため、クロマティシティ補正は未だ行 われていない。将来的には6極電磁石を設置して補 正を行う予定である。

昨年度は限られたマシンスタディの中で、1.2 GeV 加速時に最大20 mAのビームを周回させることが出 来た。現在のところ、ビームのライフタイムは約10 分であり、これはリングの真空度で制限されている が、少しずつライフタイムは増加している。

STB リングに入射されたビームが、リング内で加速される間のチューンの変化を、図2のシステムを用いて測定を行った。その一例を、図3に示す。ビーム入射直後で、水平・垂直方向のチューンが、接近して交差していることが観測された。またこの時にビーム損失が生じることも確認されており、カップリングによる差共鳴に当たったためということが分かった。^[5]

5. まとめ

東北大・核理研の2000年度の運転状況、老朽化に よる機器の更新、加速器研究についての報告をした。 ライナックに関しては、これまで30年余り運転を 行ってきたために、今後も老朽化による故障・不具 合が生じることは明らかである。これらについては 出来る限り早急に更新を進めていく必要がある。

図3:STB リングへのビーム入射時から加速終了時 までのチューンの変化の一例(入射エネルギーは200 MeV、加速エネルギーは930 MeV の時)

また、'97年より STB リングの運転を開始している が、リング入射のための入射器としてはリングのア クセプタンスとのマッチングを調べるための装置、 手順などが未だ不十分である。ライナックビームの パラメータを測定するためのモニターの設置と共に、 加速器特にライナックのスタディを精力的に行い、 ビーム損失の少ない効率のよい運転を行う必要があ る。

ビーム実験については、今年度は主にストレッチ ャービーム生成のためのビーム取り出しのマシンス タディを行っていく予定である。ブースター運転に ついても、加速中のチューンの変動を抑えたりする ようにして、更に高強度・高品質ビームの生成、蓄 積のために引き続きスタディを進めていく。

参考文献

- [1] A. Kurihara et al., Proceedings of the 25th Linear Accelerator Meeting in Japan, pp1-3 (2000)
- [2] 高橋重伸他,平成12年度東北大学技術研究会報告集 pp56-58 (2001).
- [3] Y. Shibasaki et al., in these proceedings.
- [4] S. Takahashi, in these proceedings.
- [5] H. Hama et al., Proceedings of the 18th International Conference on High Energy Accelerators (HEACC2001), to be published.