Proceedings of the 25th Linear Accelerator Meeting in Japan (July 12-14, 2000, Himeji, Japan)

[12P-10]

Simulation of High Quality Electron Beam from Photocathode RF-GUN

R. Kuroda, M. Washio, S. Kashiwagi, T. Oshima, J. Urakawa^{*}, Ilan.Ben-Zvi[†], X.J.Wang[†]

Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo KEK, 1-1 Oho, Tsukuba-shi, Ibaraki-ken, 305-0801* Brookheaven National Laboratory, 725C BNL, Upton, NY 11973, USA[†]

Abstract

Low emittance sub-picosecond electron pulses are expected to be used in wide field, such as high brightness X-ray generation, etc. In order to produce the low emittance sub-picossecond electron pulses, we are developing a compact a laser photo cathode RF-GUN. We have investigated for the first time by numerical simulation in the case of short and single pulse acceleration. In the simulation, a picosecond electron pulse from RF-GUN is accelerated to ~ 5 MeV with pulse length of 10ps(FWHM), the charge of 1nC per pulse, and emittance of about 3mm mrad. We are planning to increase a bunch charge up to ~ 5 nC or more for output from the RF-gun. We will have enormous growth of emittance due to a space charge effect without some effort. In this paper, we describe the numerical simulation results for the optimum operation and the high field acceleration.

フォトカソード RF 電子銃を用いた高品質電子ビーム発生のシミュレーション

1. はじめに

近年、レーザーフォトカソード RF 電子銃(RF-GUN)は、従来の熱電子銃では達成し得なかった低 エミッタンス、超短パルス電子ビームを発生すること ができるシステムとして世界各国で研究開発が行われ ている。

現在、早稲田大学理工学総合研究センターにおいて、 サブピコ秒領域の超高速物理化学現象の探求のため、 超短パルス電子ビームおよび超短高輝度 X 線の発生 のための実験システムの構築が行われている。本年度 は、BNL タイプの 1.6 セル S-band レーザーフォトカ ソード RF 電子銃 [1](図.1)を早稲田大学理工学総合 研究センター喜久井町研究棟に設置し、生成された電 子ビームの特性を測定するなどの様々な実験を行って いく予定である。これまでにも、RF 電子銃に関する 様々な研究が日本国内はもちろん世界各国で行われて きたが、我々はさらに電子ビーム測定システム等にも 力を入れ、運転の諸条件がビームの品質にどのように 影響を及ぼすか、シュミレーションの結果とも比較し 系統的に検討を行っていく。

また、早稲田大学理工学総合研究センターにおける レーザーフォトカソード RF-GUN では、カソードに 従来の銅ではなく、銅カソードよりも高い量子効率が 得られるマグネシウムカソードを使用する。これによ り、1 バンチあたり 2nC 以上の大電流ビームの生成 も容易にできる [2]。一方、このような高電荷のバン チを RF-GUN で加速すると、加速空洞内でのエミッ タンス増大の主たる要因の一つである、空間電荷効果 によるエミッタンス増大が支配的になることが予想さ れる。米国ブルックヘブン国立研究所の試験加速器施 設(BNL-ATF)などでは、ソレノイドマグネットを用 いて空間電荷効果の補正する方法を採用しているが、 我々は1~5nC といった更に高い電荷の加速も考えて いるため、RF-GUN の電界強度をあげる事による空 間電荷効果の軽減も現在検討している。そのため、高 電界化した際に問題になる暗電流を減らすため、現在 製作している高周波空洞は、空洞材料にクラス1の無 酸素銅を加工前に HIP 処理したものを使用し、ダイ ヤモンドバイトによる鏡面加工を施すことにした [3]。

図 1: BNL タイプ S-band RF-GUN 外観

レーザーの波長	$266~\mathrm{nm}$
レーザーの波形	ガウス分布
レーザーのパルス幅	10 ps (= 4ps)
スポットサイズ	$1.2~\mathrm{mm},2.4~\mathrm{mm}$
最大加速電界(カソード)	$93 \ \mathrm{MV/m}$
最大加速電界(フルセル)	$107~{\rm MV/m}$
共振周波数 (モード)	$2856.25~\mathrm{MHz}$
共振周波数 (0 モード)	$2850.91~\mathrm{MHz}$

表 1: RFgun のパラメータ

今回は、これまでにシュミレーションコード MAGIC[4]を用いて行ってきた、種々の運転状況下で 得られる電子ビームの性能評価および最適運転条件 の探索の結果等について報告する。また、高電荷お よび高電界に関するシュミレーション結果について も報告する。

2 計算機シミュレーション

シミュレーションでは、RF-GUN 空洞の共振モー ド(図.2)を計算し、表.1 に示したパラメータを用い て、レーザーの入射位相、パルス幅、スポットサイズ、 電荷量、RF 電界強度等を変数とし最適条件を調べた。 図.3 に RF-GUN から出力される電子ビームの横方向 (X)位相空間分布の一例を示す。この時の、カソード 上でのレーザースポットサイズ()は1.2mm で、出 カビームの諸パラメータである電荷量、バンチ長、エ ミッタンスは表.2 に示している。

図 2: 計算空洞の共振モード(モード)

そして、レーザー入射位相を変化させたときの、出 力電子ビームの電荷量が 1nC となる場合のレーザー 入射位相と RMS 規格化エミッタンス及び電子ビーム の平均運動エネルギーとの関係を図.4 に示す。この結

電荷量	1 nC
RMS 規格化エミッタンス	3.37 mm mrad
平均全エネルギー	$5.07~\pm~0.075~{\rm MeV}$
バンチ長 (FWHM)	$10 \mathrm{\ ps}$
スポットサイズ	$1.2 \mathrm{~mm}$
レーザー入射位相	45 度

表 2: 出力電子ビーム(1nC、ビームサイズ1.2mm) のパラメータ

果より、約 4mm mrad 以下の規格化エミッタンスを 実現し、かつエネルギーを 3.5MeV 以上とする場合に は、レーザー入射時の最大電界位相を 90 度とした場 合、40 度~70 度付近の位相幅、約 30 度程度が有効で あることが分かった。

図 3: 出力電子 (1nC、ビームサイズ 1.2mm)のエ ミッタンス分布

次に、高電界化を行った場合、実際どの程度のエミッ タンスのビームが得られるか、加速電界強度が100、 150、200MeVの場合についてシュミレーションを行っ た。図5、6にレーザースポットサイズ()を1.2mm、 2.4mmのそれぞれについて電荷量とエミッタンスと の関係を示す。

図5によると、1nC以下のチャージ量では、高電界 化することによって、空間電荷効果によるエミッタン ス増大を抑える効果はほとんど見られない。この原因 は、RF-GUNの加速空洞内の電場をあげる事により、 径方向の電場も大きくなるため、ビームが横方向モー メンタムを与えられ、エミッタンスが増大することが 考えられる。その効果を検証するために、レーザース ポットサイズを2倍の、2.4mmにした場合のシュミ レーション結果が図.6である。これによると、1nC程 度までのバンチ電荷量では高電界化することによって、 逆にエミッタンスの増大を引き起こしていると言える。 これらの事より、1.5nC以上の高い電荷量で、ビー

図 4: レーザー入射位相と出力電子ビームのエミッタ ンス及びエネルギーの関係

ムサイズ 1.2mm の場合は、200MV/m のような高加 速電界が有効であることがわかる。しかし、RF-GUN の加速空洞内でのエミッタンス増大の主たる原因の一 つである、径方向電場によるエミッタンス増大がビー ムサイズによっては空間電荷効果の影響よりも大きく なる事が理解できる。つまり、ビームサイズと空洞内 電場によるエミッタンスの増大とは、非常に密接に関 係しているのである。そして、レーザーのスポットサ イズ (ビームサイズ)を固定した場合、それぞれのバ ンチ電荷量に対して、最適電界が存在すると考えら れる。

図 5: 加速勾配を変化させた時の電荷量とエミッタン スとの関係(スポットサイズ 1.2mm)

また、今回のシュミレーションではバンチの縦方向 分布(バンチ長)の横方向エミッタンスに与える影響 については考察してしていないが、電場強度大きく なった場合にバンチ内の縦方向の位置による空洞内で の径方向電場の影響の違いについて更に詳しく調べる 必要がある。

図 6: 加速勾配を変化させた時の電荷量とエミッタン スとの関係(スポットサイズ 2.4 mm)

3 まとめ

今回のシュミレーションより、実際に RF-GUN を 運転する際、オペレーション条件としてレーザーの入 射位相は約 30 度程度の位相範囲(最大電界点を 90 度 とした場合の 40 度~70 度付近)で、有効に使用可能 であることが分かった。そして、そのときの出力電子 ビームは 4mm mrad 以下といった、高品質であると いう結果が得られた。今後は、早稲田大学理工学総合 研究センターにおける、RF-GUN のオペレーション 結果と比較を行っていく予定である。

また、高電界化については、電荷量 1nC 以下のビー ムに関しては径方向電場の影響より必ずしも有効な手 段であるとはいえないが、それ以上の高電荷量のビー ムに対しては有効であると言える。そして、ビームサ イズによって最適電界が存在することが分かった。今 後、入射レーザーのスポットサイズおよびパルス長な どを変化させ、最適解を求めていく予定である。

謝辞

本シミュレーションにあたり、電磁場解析コード MAGICの使用のため、高エネルギー加速器研究機構(KEK)の陳先生に協力を頂き、ここに感謝の意を 表します。

参考文献

- X. J. Wang et al., Proc. 1995 Part. Accel. Conf. (1995) p.890
- [2] T. Srinivasan-Rao et al., Proc. 1997 Part. Accel. Conf. (1995) p.2790
- [3] C. Suzuki et al., Proc. 24nd Linear Accel. Meeting in Japan, (1999) p.122
- [4] MAGIC home page, http://www.mrcwdc.com/
- [5] S. Matsumoto,"MAGIC によるクライストロンシミュ レーション", OHO'99, IIE