Present status of Laser Undulator Compact X-ray source (LUCX) (2)

Masafumi Fukuda^{1,A)}, Sakae Araki^{A)}, Yasuo Higashi^{A)}, Koichiro Hirano^{D)}, Yosuke Honda^{A)}, Toshiya Muto^{E)},

Kazuyuki Sakaue^{B)}, Noboru Sasao^{C)}, Shengguang Liu^{A)}, Mikio Takano^{F)}, Takashi Taniguchi^{A)},

Nobuhiro Terunuma^{A)}, Junji Urakawa^{A)}, Yoshio Yamazaki^{D)}, Hirokazu Yokoyama^{C)}

^{A)} High Energy Accelerator Research Organization

1-1 Oho, Tsukuba-shi, Ibaraki, 305-0801, Japan

^{B)} Research Institute for Science and Engineering, Waseda University

17 Kikui-cho, Shinjuku-ku, Tokyo, 162-0044, Japan

^{C)} Facility of Science, Kyoto University

Oiwake-Cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan

^{D)} Japan Atomic Energy Agency

2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan

E) Laboratory of Nuclear Science, Tohoku University

1-2-1 Mikamine, Taihaku-ku, Sendai-shi Miyagi, 982-0826, Japan

^{F)} Saube Co., Ltd.

3-17-3 Hanabatake, Tsukuba-shi, Ibaraki, 300-3261, Japan

Abstract

We have developed a high flux X-ray generator via inverse Compton scattering of an e- beam and a high power pulsed laser beam with a pulsed-laser stacking cavity. In order to demonstrate the X-ray generation using a pulsed-laser stacking cavity, we have constructed the linac to produce the multi-bunch e- beam with the energy of 43MeV and the charge of 200nC/100bunches. The most important issue is the beam loading in accelerating such high charge multi-bunch beam. By utilizing the rate T method to compensate the effect, the operation in 40MeV, 50nC/100bunches has been carried out with the energy difference within 1%. This paper reports the present status of this linac.

KEK小型電子加速器(LUCX)の現状報告(2)

1. はじめに

現在、X線は動的血管造影やたんぱく質の構造解 析など医療、生命科学、材料科学など広い分野で利 用されている。例えば、動的血管造影では患者の体 内にヨウ素を注入し、ヨウ素のKエッジ (33.169keV) 前後のエネルギーのX線を照射する。 透過X線のコントラストをとることにより、血管の 鮮明な像を得ることができる。高輝度X線源として はGeVオーダーの電子ビーム蓄積リングを利用した もの(SPring8など)があり、高輝度で高い安定性をも つが、一般的に装置が巨大で高価であり使用できる 場所は限られている。よりコンパクトなX線源とし てレーザーコンプトン散乱を用いたX線源の開発が 行われている。この方法は放射光施設と比較してよ り低いエネルギーの電子ビームで同じエネルギーの X線を生成できるため蓄積リングを小型化でき比較 的安価に装置を構築できるというメリットがあり、 新しいX線源として期待されている。ただし、コン プトン散乱の断面積は小さく、生成X線数が少ない という問題がある。生成X線数を増大のため光共振

器を利用したパルスレーザー蓄積装置と小型蓄積リ ングを利用したX線源が考案されている^{[1][2]}。

我々は放射線医学総合研究所と共同で医療利用を 目的としたレーザーコンプトン散乱を用いた小型X 線源の開発を行っている。最終的な装置構成は、周 長約13mの小型の蓄積リング中にレーザー蓄積装置 を設置したものになる^[2]。この装置では赤外 (1064nm)のレーザーパルスと43MeVの電子ビームと のコンプトン散乱により33keVのX線を生成する。 現在、KEKに設けた小型電子加速器(図1)で、高 品質で大強度のマルチバンチ電子ビーム源の開発、 およびパルスレーザー蓄積装置を用いたX線生成実 験を行っている。2005年11月まで第1段階として電 子源の開発を行った。電子源としてフォトカソード RF電子銃を採用した。これは、高品質なビームを 得られ、さらにレーザーのバンチ構造をそのまま引 き継ぐため、バンチャーなどの装置が不要となり、 ビームラインを小型化でき、またマルチバンチビー ムも容易に生成できるためである。カソードとして モリブデン表面に金属カソードに比べて量子効率の 高いCs-Teを蒸着したものを使用しており、量子効

¹ E-mail: mfukuda@post.kek.jp

Beam energy and energy spread measurement

小型電子加速器ビームライン 図1

率は0.3%以上を保持していた。このRF電子銃を用 いた大強度マルチバンチ電子ビームの生成の実験で は、220nC/train、100bunches/trainのマルチバンチ電 子ビームの生成に成功した^[3]。現在は第2段階とし てS-band 3m加速管を追加してビームエネルギーを 5MeVから43MeVまで上げ、2006年7月中旬からビー ム運転を開始している^[4]。さらに2007年5月には レーザー蓄積装置を追加し、これを用いた逆コンプ トン散乱によるX線生成実験を開始した^[5]。本稿で は、この小型電子加速器の現状について報告する。

2. 小型電子加速器

2.1 ビームライン

図1は小型電子加速器のビームラインである。電 子源には引き続きフォトカソードRF電子銃を採用 している。レーザーパルス(266nm)はシケイン中央 部分からカソードへ垂直に入射する。RF電子銃で 生成した4MeVの電子ビームはS-band 3m加速管で 43MeVまで加速する。その下流にはX線生成を行う 部分があり、衝突点(C.P.)にはレーザー蓄積装置を 設置している。加速管直前と衝突点前後には四極電 磁石を設置した。これらは加速管内でのビームサイ ズの保持や衝突点でビームサイズの収束、また、収 束後に広がるビームサイズを抑えビームダンプまで 輸送するためのものである。最後は偏向電磁石で ビームを垂直下方に設置したビームダンプに捨てる。 ビームダンプ直前には電子ビームのエネルギーや電 荷量を測定するためにOTRプロファイルモニタ、

表1 電子ビームのパラメータ

Energy	40MeV
Intensity	0.5nC/bunch
Number of Bunches	100 bunches/train
Bunch spacing	2.8ns
Bunch length	10psec
Repetition Rate	12.5 train/sec
Emittance	7-10 π mm • mrad
Momentum spread(σ_p/p)	0.15 %
Beam size at C.P. (σ_{y}, σ_{y})	80um. 40um

図2 RF system

Beam Position Monitor(BPM), ICTを設置した。上流 の各所にも BPM やプロファイルモニタを配置して いる。また、X線は偏向電磁石の後方より厚さ 0.3mmのBe窓を通して大気中に取り出す。ビームラ インの全長は約11mである。電子ビームのパラメー タは表1のようになっている。また、このビームラ インのオプティクスはSAD (Strategic Accelerator Design)⁶⁰を使って設計した。衝突点での電子ビーム サイズは $\sigma_x=64 \mu m$, $\sigma_v=32 \mu m$ と計算されている。 またX線検出に際してビームロスによるバックグラ ウンドを抑えるため、全体を通してビームサイズが 3mm 以下になるようにした。

2.2 RF system

図2はRF systemである。Klystronは東芝製E3718を 使用しており、この1台でRF電子銃と加速管に RF(2856MHz)を供給している。Klystronからの 47MWの出力電力は、進行波型RFパルス圧縮器 RRCS(Resonant-Ring type Compression System) ^[7]で ピーク電力を3.25倍に増幅される。その後、RF電子 銃と加速管の両方へ分配し、それぞれ最大ピーク電 力53MW、46MWを供給する。

大電流マルチバンチビームの加速にとって最大の 問題となるのが、ビームローディングにより生じる バンチ毎のエネルギーである。これはビーム収束時 に色収差により衝突点でのビームサイズを増大させ てしまう。200nC/train, 100bunches/trainの場合にロー ディングによりバンチの先頭と後方で約18MeVのエ ネルギー差が生じる。電子ビームを100μm以下に 収束させるにはエネルギー差を1%以下に抑える必 要がある。そこで、高周波が空洞内を満たしつつあ る過渡期にビームを乗せ、後方バンチほど加速電場 を高くすることでローディングの影響を相殺し補正 する。ただし、過渡期に入射するとその分加速電場 が下がってしまう。それを補うためにRRCSを用い ピーク電力を上げて必要なビームエネルギーを得ら

れるようにしている。

図3は設計値の200nC/100bunchesのビームを輸送 した場合の計算結果である。黒線が加速管出口での ビームエネルギーで、青線が100bunchesを入射した 時のビームトレインのエネルギーである。パルス圧 縮部の始めから0.2 µ sのところにビームを入射する と補正できるのが分かる。このときエネルギー差は 1%である。

2.3 エミッタンス測定

エミッタンスはQスキャン法^[8]により測定している。ビームサイズはOTRプロファイルモニタにより を測定した。図4はOTRモニタで測定した衝突点で のビームプロファイルである。図5はQスキャン測 定結果の一例である。衝突点でのエミッタンスは7-10πmm・mradである。 2.4 ビームローディング補正試験

図6(左)の黒点が2.5nC/train, 5bunchesの時に測定し たRFに対するレーザー入射時間とビームエネル ギーの変化のグラフで、ローディングのない場合の ビームエネルギーに対応する。図6(右)が50nC/train, 100bunchesのビームを加速したときの各バンチのエ ネルギーである。タイミングが早すぎる(1)と補正 しすぎて後方バンチのエネルギーが上がり、遅すぎ る(3)と逆になる。うまく合わせる(2)とビームエネ ルギーが揃うのが分かる。このとき、40MeVに対し てバンチ毎のエネルギー差は0.4MeVになっており、 約1%のエネルギー差に抑えることができているの が分かる。

3. まとめと今後

現在はRF電子銃での放電のためRF電力を設計値よ り下げて運転している。目標の43MeV, 100bunches, 200nCの電子ビームを生成するには、RF電力をもっ と上げる必要があり、引き続きRFエージングも継続 し目標のビーム生成を目指す。また、レーザー蓄積 装置を用いたX線生成実験を開始した。今秋から本 格的に実験を行う予定である^[4]。

参考文献

- [1] Z. Huang and R. D. Ruth, "Laser-Electron Storage Ring", Phys. Rev. Lett. 80 pp976 (1998).
- [2] J. Urakawa, et al., "Electron beam cooling by laser", Nucl. Instr. and Meth. A532, pp388-393 (2003).
- [3] K. Hirano, et al., "High-intensity multi-bunch beam generation by a photo-cathode RF gun", Nucl. Instr. and Meth. A560, pp233-239 (2006).
- [4] K. Sakaue, et al., "Laser Undulator Compact X-ray source (LUCX) using Pulsed-Laser Super-Cavity", in this meeting.
- [5] M. Fukuda, et al., "Present status of Laser Undulator Compact X-ray source (LUCX)", Proc of the 3rd Annual Meeting of Particle Accelerator Society of Japan.
- [6] SAD http://acc-physics.kek.jp/SAD/sad.html
- [7] S. Yamaguchi, et al., "High-Power Test of a Traveling-Wave-Type RF-Pulse Compressor", Proc. PAC1995, Dallas, USA (1995) pp1578-1580.
- [8] M. C. Loss, et al., "Automated Emittance Measurement in the SLC", Proc. PAC87, Washington.D.C., USA (1987) pp725-728.