STATUS OF ERL DEVELOPMENT AT JAEA (2007)

Ryoji Nagai^{1,A)}, Ryoichi Hajima^{A)}, Masaru Sawamura^{A)}, Nobuyuki Nishimori^{A)}, Nobuhiro Kikuzawa^{A)}, Hokuto Iijima

^{A)}, Eisuke Minehara^{B)}

^{A)}Energy Recovery Linac Development Group, Japan Atomic Energy Agency

2-4 Shirakata-Shirane, Tokai, Ibaraki, 319-1195

^{B)}Advanced Photon Source Development Unit, Japan Atomic Energy Agency

2-4 Shirakata-Shirane, Tokai, Ibaraki, 319-1195

Abstract

We are proposing energy-recovery linac (ERL) based photon sources, which are a next generation X-ray light-source, a γ -ray source for a radioactive waste management, and an EUV-FEL for a next generation lithography. Related R&D is in progress. In this paper, we summarize these proposed ERL photon sources and research activities.

原子力機構におけるERL開発の現状 (2007)

1. はじめに

日本原子力研究開発機構、ERL光量子源開発研究 グループではこれまでに超伝導加速器、高出力自由 電子レーザー(FEL)、エネルギー回収型リニアック (ERL)における先導的な研究開発を通じて、電子 ビームを用いた光量子源のポテンシャルを飛躍的に 高めることに貢献してきた。高輝度と大電流の両立 を可能とするERL技術は、テラヘルツからガンマ線 まで、全てのエネルギー領域において、光量子源の 性能を革新的に高めることができることから、多く のユーザの期待を集めている。われわれは、これら ERL型光量子源の実現に向けて、その中核技術であ る高輝度大電流電子銃の開発を精力的に進めると同 時に、ユーザと連携をとりながらERL光量子源の設 計研究を行っている。本稿ではこれら研究の現況に ついて報告する。

2. ERL光量子源の提案

ERLによって加速される電子ビームの性質はリニ アックによって加速される電子ビームのそれであり、 超短パルス、極低エミッタンスの電子ビームが生成 可能である。さらに、超伝導加速器を用い電子ビー ムを減速・エネルギー回収することで蓄積リングの ような大電流加速が可能となる。従って、電子ビー ムの一部を光量子として取り出す目的の加速器とし ては最適の加速器であるといえる。

我々は、発生する光の波長領域毎に、ユーザの要 求に応じていくつかのERL光量子源を提案している。 以下にそれぞれの特徴と現在までの研究の現状につ いて述べる。

2.1 次世代放射光源としてのERL

前述のERLの特徴を活かすことで、第3世代放射

光施設(SPring-8など)を超えるX線放射光源が実現で きる。特にERLではこれまでの蓄積リング型放射光 源では実現が困難であったフェムト秒および回折限 界以下の低エミッタンスの電子ビームが生成可能で あることからフェムト秒時間分解能および可干渉性 を必要とする分野での利用が期待される。我々は、 ERL-FEL開発で蓄えた超伝導リニアック技術を発展 させて、ERL駆動型次世代X線放射光源の実現に至 る開発計画を提案してきた^[1]。現在はKEK、東大物 性研、UVSOR、SPring-8との共同で実証機開発を進 めている^[2]。実証機では大強度テラへルツ光、レー ザコンプトンによるフェムト秒X線の発生と利用も 検討している^[3]。

図1: ERL放射光源の開発

2.2 放射性廃棄物処理・処分のためのγ線源

放射性廃棄物の処理・処分は原子力の最優先課題 であり、原子力機構が保有する廃棄物の処理・処分 には2兆円の費用と80年の期間が必要であると試算 されている。日本全体ではこの10倍を超える費用が 必要である。米国核兵器工場の廃止措置において、 X線放射光を使った研究成果が30兆円の費用削減を もたらした例⁽⁴⁾を見るように、最先端科学を援用す ることで廃棄物の処理処分にかかる費用を大きく節 減できる可能性がある。我々は、ERL駆動型γ線に よる光核共鳴散乱^[5]を利用した放射性核種の非破壊 定量を行い、廃棄物の効率的な処理・処分を実現す る提案を行っている。

¹ E-mail: nagai.ryoji@jaea.go.jp

このためのERL駆動型γ線源は図2に示すような ものであり、ERLとスーパーキャビティを用いコン プトン散乱によりγ線を発生することで高効率、大 強度のγ線を発生することができる。350MeV-ERL、 モードロックファイバーレーザ、スーパーキャビ ティの技術を組み合わせることで、既存のγ線源を 6-8桁上回るフラックス(1×10¹⁰/sec/keV)が実現で きると考える^[5]。

2.3 EUVリソグラフィのためのEUV-FEL

現在のLSIの微細化には、回路パターンを露光・ 転写するリソグラフィ技術が使われている。従来の 真空紫外光の波長193nmよりも、一桁以上短い 13.5nm波長の極短紫外(EUV)光を用いるEUVリソグ ラフィは2010年以降の回路線幅45nm以下を可能に する次世代リソグラフィ技術の最有力候補である。 しかし、EUV光の光源としては、プラズマにより EUV光を発生するLPPやDPPがこれまで研究されて きたが、必要とする出力を得るのが困難である、デ ブリによりミラーを汚してしまうなどの問題がある。 一方、SASE-FELでは、DESY の FLASH において 13nm の発振が得られており、これを利用したユー ザ実験が始まっている^[6]。FLASH はパルス運転の ため大出力EUVを得ることができないが、これを ERL化することでリソグラフィに必要なEUV光の発 生が可能になる。我々はERL駆動型のEUV-FELを提 案し、設計を進めている^[7]。ERL駆動型EUV-FELで はLPPやDPPでは発生できないような数kWのEUV光 を発生できるので、1台のERL駆動型EUV-FELで複 数の露光装置を駆動することができる。FEL光はコ ヒーレンスであるためプラズマEUV源とは異なる性 質の光であるが、適切な光学系でデコヒレーレンス 化が可能である。また、コヒーレンスを利用した新 しいリソグラフィ手法も提案されている。

我々の提案したERL駆動型EUV-FELを図3に示す。 装置の長さは約80mである。装置の大きな特徴は光 量子発生にSASE-FELを用いること、FELのために 電子バンチを100fs程度まで圧縮するためのバンチ ング・セクションをリニアック中央に設けてあるこ とである。アンジュレータ部でのビームパラメータ はエネルギー580MeV、電荷量0.33nC、バンチ長 100fs、エネルギー広がり0.16%、規格化エミッタン ス0.8×0.4mm-mrad、繰返し36MHzである。アン ジュレータのパラメータは波長2.0cm、周期数222× 4、ギャップ6mm、Kパラメータ0.81である。このパ ラメータの基でGENESIS^[8]によるシミュレーション では、波長13.5nmで2.54kWのEUV光が得られている。シミュレーションの結果を図4に示す。4台目のアンジュレータで飽和している様子が分かる。

EUV-FEL装置1台で複数の露光装置にEUVを供給 することが可能であるが、将来は、さらなる小型化 が必要と考えており、トムソン散乱を利用した小型 EUV光源の検討も行っている。現在はトムソン散乱 についての基礎実験の計画^[9]をしている段階である。

3. ERL要素技術開発

3種類の異なるERL光量子源について述べたが、 いずれの光源も鍵となる技術は共通である。特に高 輝度電子銃はERLの性能を決定する装置であり、最 優先の開発課題である。このため、我々は250kV-50mAのDC電子銃の開発を進めている。これまでに コッククロフトの高電圧試験、すぐれた量子効率と 寿命特性をもつ新型光陰極の開発を完了した^[10]。現 在、ビーム引き出し実験に向けた準備を進めており、 今後は、陰極の大電流試験、陰極の長寿命化、熱エ ミッタンス測定、時間応答性測定など、実証機用電 子銃の製作に必要な技術開発を行う予定である。陰 極の時間応答性についてはせいぜい数10psであると いう報告[11,12]がある。時間応答性の悪さは暗電流や エミッタンス増大の原因になる可能性があるので、 時間応答性改善を図る必要がある。現状では陰極の 薄膜化や電子銃からでたところでチョッパによる時 間成型などの方法が考えられている。この問題につ いては今後詳しく検討していく予定である。

電子銃の開発と並行して、大電流加速用超伝導空 洞の研究も進めている。これまでに、偏心フルート による四極HOMの減衰を提案し、その有効性を確 認した^[13]。現在、KEK、ISSPと共同でERL実証機用 の超伝導空洞の試作を進めているが、偏心フルート も採用する予定である。

ERL放射光源ではフェムト秒時間分解の実験も期待されている。この時重要なのはRF信号とレーザーの同期である。フェムト秒レーザーとRF信号

<figure><figure>

の同期についての要素技術開発も行っている[14]。

4. JAEA-ERLの稼働状況

JAEA-ERLでのFEL高出力化は休止状態にあるが、 加速器本体は常にstand-by状態に保たれており(これ までの各装置の安定化やデータロギングなど制御系 改善の恩恵)、電子ビームによるHOMの励起に関す る研究^[15]や赤外FEL光による量子制御のためのFEL 光のFROGによる光計測^[16]が行われている。電子銃 直後で熱エミタンスを計測するためのモニタも開発 の必要があり、そのようなモニタの試験もJAEA-ERLのビームを用いて行っていく予定である。

5. まとめ

我々が培ってきた高出力FEL、超伝導加速器、 ERLに関する技術は電子ビームを用いた光量子源の 性能を飛躍的に高めると期待されている。これらの 技術を基に様々な用途・要求に応じたERL型放射光 源を提案・実現していくことで、広く、科学・産業 に貢献していきたいと考えている。

参考文献

- [1] 羽島良一、"エネルギー回収型超伝導リニアック(ERL) 次世代放射光源とその拓く世界"、日本放射光学会次 世代放射光源検討特別委員会公開シンポジウム、 2005年4月12日.
- [2] 河田洋、他、"ERL計画の現状"、本論文集.
- [3] ERL研究会「コンパクトERLが拓く世界」、 http://pfwww.kek.jp/pf-seminar/ERL/ERL_07July.html
- [4] D.L. Clark, et al., "Science-based cleanup of Rocky Flats", Physics Today, Sep. 2006.
- [5] 菊澤信宏、他、"ERL型大強度 γ 線源による放射性廃 棄物中の核種検出"、本論文集.
- [6] http://vuv-fel.desy.de/
- [7] R. Hajima, et al., "A Multi-kW EUV Light Source Driven by Energy-Recovery Linac", Proc. of the SEMATECH EUV Source Workshop, Oct. 19, 2006, Barcelona, Spain.
- [8] http://pbpl.physics.ucla.edu/~reiche/index.html
- [9] 西森信行、他、"トムソン散乱におけるレーザー強度 依存ドップラー赤方偏移測定計画"、本論文集.
- [10] N. Nishimori, et al., "Development of an electron gun for the ERL light source in Japan", Proc. of the ERL07, to be published.
- [11] P. Hartmann, et al., J. Appl. Phys. 86 (1999) 2245-2249.
- [12] W. E. Spicer, et al., SLAC-PUB-6306.
- [13] M. Sawamura, et al., "Quadrupole HOM Damping with Eccentric-Fluted Beam Pipes", Proc. of the 2007 PAC, to be published.
- [14] 羽島良一、他、"サニャックループによるフェムト秒 レーザとRF信号の高精度同期"、本論文集.
- [15] M. Sawamura, "Measurement of Beam Position Monitor using HOM Couplers of Superconducting Cavities", Proc. of the 2007 PAC, to be published.
- [16] 飯島北斗、他、"周波数分解光ゲート法による中赤外 FELパルスの計測"、本論文集.