EMITTANCE COMPENSATION SOLENOID OF A DC PHOTO-CATHODE ELECTRON GUN

Ryoji Nagai^{1,A)}, Ryoichi Hajima^{A)}, Nobuyuki Nishimori^{A)}, Hokuto Iijima^{A)}, Masaru Sawamura^{A)}, Nobuhiro Kikuzawa

^{A)}, Eisuke Minehara^{B)}

^{A)}Energy Recovery Linac Development Group, Japan Atomic Energy Agency

2-4 Shirakata-Shirane, Tokai, Ibaraki, 319-1195

^{B)}Advanced Photon Source Development Unit, Japan Atomic Energy Agency

2-4 Shirakata-Shirane, Tokai, Ibaraki, 319-1195

Abstract

An emittance compensation solenoid magnet is designed for a DC photo-cathode electron gun. The DC gun is now in fabrication at JAEA for an energy-recovery linac (ERL) light-source. The ERL light-source requires very low emittance electron beam to generate coherent X-rays. In order to produce the very low emittance electron beam from the DC gun, a focusing lens is indispensable to compensate the linear emittance growth. A solenoid magnet is employed for the emittance compensation lens. The solenoid magnet consists of a main coil, pure iron yoke, and a backing coil. The compensated emittance is estimated less than 0.6 mm-mrad in the bunch charge of 77pC by PARMELA simulation.

DC光陰極電子銃のためのエミッタンス補償用ソレノイド

1. はじめに

エネルギー回収型リニアック(ERL)は次世代の放 射光源用加速器として世界各国で開発計画が進めて られている加速器である。ERLの大きな特徴はリニ アックの特徴を生かし、フェムト秒バンチ長、回折 限界以下の超低エミッタンスの電子ビームを生成で きる点にある。この電子ビームにより発生される放 射光はフェムト秒、高コヒーレンスであり、これま での放射光では実験が困難であった生物、化学分野 のフェムト秒分解能での実験が期待されている。

ERLでは蓄積リングと異なり、電子ビームの性能 は電子銃を含む入射器の性能に大きく左右される。 従って、電子銃では充分に小さなエミッタンスの電 子ビームを引き出す必要がある。電子銃から引き出 される電子ビームのエミッタンスの下限を決めてい るのは陰極から引き出された電子の持つ余分なエネ ルギーである。従って、高温で動作する熱陰極や負 性電子親和力(NEA)でない光陰極では自ずとエミタ ンスの下限が大きくなってしまうので、ERL用の電 子銃ではNEA光陰極以外の解はない。

陰極に入射するレーザー光の時間方向プロファイ ルが平坦ではない時には空間電荷力により、時間ス ライスごとにx-x'位相空間分布がずれてしまうため にエミッタンスが大きくなる。幸い、このエミッタ ンスの増大は収束レンズで補償できる^[1]。この補償 用のレンズは粒子の位相空間分布が時間方向で混ぜ 合わさる前に配置する必要がある。このエミッタス 補償用のレンズとしてソレノイド電磁石を採用した。 現在調整中の250kV光陰試験用電子銃^[2]でのソレノ イド電磁石の位置と強度の最適化をParmela^[3]を用い て行った。ソレノイド電磁石を設計・製作し、得ら れるエミッタンスを求めた。ソレノイド電磁石の ヨーク等の設計はELF/Magic^[4]で行った。この設計 を基にPoisson^[5]で計算した磁場分布をParmelaに取り 込んでエミッタンスの計算を行った。

2. ソレノイドの位置・強度の最適化

エミッタンス補償のための最適なソレノイドの位置と強度をParmelaで求めた。ただし、ソレノイド磁場については長さ100mmとしてParmelaのsolenoid要素を用いた。250kV光陰試験用電子銃のウェネルト、アノード電極は平行平板でギャップは40mmである。この間の電場をPoissonで求めてParmelaの計算に反映している。陰極表面でのビーム径は最も小さいエミッタンスが得られるものとした。径方向の分布はほぼ矩形とし、時間方向の分布はガウス分布の裾を切り落とした形状とした。

時間方向プロファイルをガウス分布としているの で、時間スライスごとに空間電荷力による発散が異 なるためにx-x'位相空間での分布に差が生じる。発 散が大きい方の分布と発散が小さい方の分布はドリ フトしていく間にどんどん離れていく、即ちエミッ タンスが増大する。これを補償するには、収束レン ズにより位相空間上で分布を回転させ発散の絶対値 の大小関係を入れ替え、ある距離ドリフトすると二 つの分布が重なる点が現れる。この二つの分布を直 線で表した時の補償の様子を図1に示す。これが linear emittance growthのレンズによる補償である。

¹ E-mail: nagai.ryoji@jaea.go.jp

従って、レンズの強度によってレンズからの補償点 までのドリフト距離が変わってくる。実際の加速器 で補償をする場合にはある程度加速してスライスが ずれないエネルギーになるところを補償点とするよ うにレンズの強度を調整する必要がある。

図1: linear emittance growthの補償

図2:ソレノイドの最適位置と強度

linear emittance growthだけならエミッタンスは完 全に補償できるはずであるが、現実にはnonlinear emittance growthのために、完全に補償できない。そ こで、アノード電極からソレノイド入口までの距離 を変えたときに得られる最適磁場強度、最適ドリフ ト距離と得られるエミッタンスを求めた。その結果 を図2に示す。アノード電極からソレノイドの入口 までの距離は10cm付近で磁場強度は30mT程度が最 適であることが分かる。

3. ソレノイド電磁石の設計および製作

250kV光陰試験用電子銃においてソレノイドをア ノード電極から10cm付近に配置すると、ICF253フ ランジをソレノイドの中に通す必要があり、ソレノ イドのボア径は300mm程度必要となる。このように 大きなボア径では例えヨークをつけたとしても陰極 表面への漏れ磁場は避けられない。陰極表面の磁場 による規格化エミッタンスは

$$\varepsilon_{n,rms} = \frac{er_0|B_{z0}|}{8m_0c}$$

と表される^[6]。ただし、 r_0 はビーム半径、 B_{z0} は陰 極表面の磁場である。従って、0.1mm-mrad以下の規 格化エミッタンスの電子ビームを得ようとするなら ば陰極表面でのビーム半径を1mmとすると磁場は 1mT程度以下にする必要がある。

図3:ソレノイド電磁石の形状

そこで、ソレノイド電磁石にバッキング・コイル をつけて漏れ磁場を打ち消すことにした。また、ソ レノイドを配置できる箇所は他のチャンバとの干渉 を避けるためにアノード電極から10cmの位置(最適 位置)より近い場所になってしまう。そこで、陰極 への漏れ磁場を減らす目的と磁場の位置を下流側へ ずらすために図3に示すように横開きのヨークを採 用することにした。中央部ヨークおよび主コイルの 内側のヨークでは磁束の集中が多いので磁性体の飽 和を避けるために太くしてある。ヨークの材料は純 鉄とし、ELF/Magicを用いて磁場の分布を求めた。 この形状で30mT程度以上のピーク磁場を得るため には、主コイルで10000AT程度必要となる。このコ イルの面積でこの電流を流すと発熱が大きいので、 除熱の問題からホロー・コンダクタを採用した。図 のように主コイルは36turn、バッキング・コイルは 12turn、主コイルの最大励磁電流は280Aとした。主 コイルを280Aで励磁し、バッキング・コイルで補 正した時の磁場分布の様子(ELF/Magic、Poissonの計 算結果と実測)を図4に示す。陰極を出た後もある 程度エネルギーが上がるまで磁場が無いほうがよい ので、陰極とアノード電極の中央で磁場がゼロにな るようにバッキング・コイルを調整した。この時、 陰極表面での磁場は計算、実測ともに約0.4mTで あった。ヨーク中の最大磁場1.32T、比透磁率2586 でありヨークで飽和が起きていないことを ELF/Magicで確認している。主コイルの励磁電流を 変えたときのバッキング・コイルの励磁電流とピー ク磁場の関係を図5に示す。図4、5ともに、計算 した磁場強度と実測値がほぼ一致していることから、 製作の不具合が無いことが分かる。また、図5から 磁性体の飽和などの影響がなく直線的に励磁できて いることが分かる。

図5:主コイルの励磁電流に対するピーク磁場強度 とバッキング・コイルの励磁電流

4. エミッタンスの評価

Poissonで計算した磁場分布を用いて、Parmelaで 補償後得られるエミッタンスを電荷量77pCと7.7pC の場合について求めた。それぞれの場合の規格化エ ミッタンスとビームサイズの変化の様子を図6に示 す。電荷量7.7pCの場合にはピーク磁場25.1mTで規 格化エミッタンス0.11mm-mrad、電荷量77pCの場合 にはピーク磁場23.8mTで規格化エミッタンス 0.59mm-mradが得られた。

ソレノイドを設置する際の精度を明らかにするた めに、角度および位置ずれによるエミッタンスの変 化を計算した。その結果を図7に示す。エミッタン スの増加を1%程度以下にするために必要な位置精 度と角度精度はそれぞれ、0.3mmと5mradであるこ とが分かる。この精度は3次元測距器で設置可能な 精度である。図7の等高線が斜めに傾いているのは、 横開きヨークを採用したために、磁場分布の中心が ソレノイドの機械中心に対して下流側にずれている ためである。

5. まとめ

DC光陰極電子銃ためのエミッタンス補償用ソレ ノイド電磁石を設計・製作した。このソレノイドに より0.6mm-mradのエミッタンスを電荷量77pCの電 子ビームで得られることをParmelaのシミュレー ションで示した。

電子銃の電極形状についての最適化は未だされて おらず、電極形状の最適化でさらに低いエミッタン スを得られることが期待される。

参考文献

- [1] B.E. Carlsten, Nucl. Instr. Meth. A285 (1989) 313-319.
- [2] 飯島北斗、他、"原子力機構における250kV-50mA フォトカソードDC電子銃開発の現状"、本論文集.
- [3] Parmela ver. 3.40; L. M. Young, LA-UR-96-1835.
- [4] http://www.elf.co.jp/product/elfmagic.html
- [5] Poisson ver. 7.16: J.H. Billen, LA-UR-96-1834.
- [6] D.T. Palmer, et al., Proc. of the 1997 PAC (1997) 2843-2845.