DOUBLE-DECKER ELECTRON BEAM ACCELERATOR AND PULSE RADIOLYSIS

Yoichi Kuroda¹, Jinfeng Yang, Takafumi Kondoh, Yoichi Yoshida The Institute of Scientific and Industrial Research, Osaka University 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 Japan

Abstract

A new concept of double-decker electron beam accelerator is proposed to study the ultra-fast electron-induced reactions in materials by pulse radiolysis. The double-decker electron beams are generated and accelerated in an Sband linear accelerator with different positions in vertical direction and a time delay. One of them is used as a pump electron source and another is converted to light as a probe light source. The time jitter between the pump electron beam and the probe light is thus reduced. The time resolution of pulse radiolysis is expected to be improved. The double-decker electron beam has been generated successfully by injected two laser beam into the photocathode RF gun, which is generated by splitting an Nd:YLF picosecond laser beam. The double-decker electron beams were accelerated up to 31MeV by an S-band booster linear accelerator and compressed into femtosecond by a magnetic bunch compressor. The profiles of the double-decker electron beams were measured at the exits of the RF gun, the linac and the bunch compressor. The normalized transverse emittance was obtained to be 3.3mm-mrad for the upper beam and 6.4mm-mrad for the lower beam at bunch charge of 2nC. The relative energy spread was obtained to be $0.1\sim0.2\%$ for both beams. The Cherenkov light generated in a suprasil plate and OTR produced on a mirror from the electron beam were also measured.

ダブルデッカー電子ビーム加速器の開発とパルスラジオリシスへの応用

1. はじめに

電子線をガン治療、半導体ファブリケーションな どの産業応用することが注目されている。電子線を 高精度でそれらの目的に利用するためには、電子線 と物質の極めて高速な反応を分析し、それらに関す る知見を得る必要がある。しかしながら、それらは いまだ明らかになっていない。電子線が物質に入射 すると、まず電子線の電荷によるイオン化が起こり、 余剰のエネルギーを持つ電子はやがて熱化し、ス パー内でジェミネートイオン再結合などの反応が起 こる。電子の熱化はフェムト秒の時間領域で起こる と考えらており、これらを明らかにするのはいまだ 不可能である。本研究は、このフェムト秒領域での 反応を、パルスラジオリシスの時間分解能を向上さ せて明らかにすることを目標とする。パルスラジオ リシスとは、試料に電子線パルスと分析光を入射し、 吸収分光を用いてそれらの反応を時間的に分析する 方法であるために、高速な反応を分析するのに適し ている。

パルスラジオリシスは1969年、トロント大学の Huntらによって開発された。ここではS-band線形加 速器が用いられ、分析光としては電子線から発生し たCherenkov光が用いられた。そのときの時間分解 能はピコ秒であり、現在ではサブピコ秒の時間分解 能を持つパルスラジオリシスが開発されている。式 1はパルスラジオリシスの分解能を決める要因を表 す式である。

$$\Delta t = \sqrt{t_e^2 + t_l^2 + t_j^2} + g_{(L)}, \quad (1)$$

式(1)において、t_e²は電子線のパルス幅、t₁²は分析 光のパルス幅、t_j²はそれらの時間ジッターであり、 g_(L)²はサンプルセルの屈折率による電子線と分析光 の速度差に起因する時間分解能劣化を表す。電子線 のパルス幅については45°偏向電磁石を用いたパル ス圧縮の技術によりフェムト秒まで圧縮することが 可能である。分析光にはフェムト秒レーザーが用い られ、そのパルス幅は最短80fsである。セルの屈折 率に起因する時間分解能劣化は、等価速度分光法と 呼ばれる電子線の斜め入射を用いた方法により解決 することが可能である。しかしながらこれらの方法 では、電子線とレーザーのジッターを小さくするこ とができない。この問題を、ダブルデッカー電子 ビームを用いて解決する。

ダブルデッカー電子ビームとは、Nd:YLFピコ秒 レーザーを2つに分岐してレーザーフォトカソード RF電子銃に入射し、発生した電子線をS-bandライ ナックを用いて加速し、上下2つに並んだ状態で得 る方法である。2つのうち1つはサンプルの励起源 として用い、もう1つはcherenkov光、OTR光に変換 して分析光として用いる。2つの電子線は上下の位 置だけでなく、時間的にもわずかにずれている。こ れは分析光と電子線のサンプルへの入射時間を調整

¹ E-mail: kuroda81@sanken.osaka-u.ac.jp

するためのディレイに通すからである。それらの時 間差は350psの整数倍であり、これは加速RFが 2856MHzで運転されているためである。

今回分析光発生の実験としてcherenkov光、OTR光 の発生実験を行った。

cherenkov光は、屈折率が1より大きい物質中を荷 電粒子が通過するとき、荷電粒子の電荷によって分 極が起こり、その分極が戻るときのエネルギーが電 磁波に変わることによる発光現象である。

電子ビームをcherenkov光に変換するときに発生する波長 λ_1 から $\lambda_2(\lambda_1 < \lambda_2)$ の領域での単位電子あたりの光子のエネルギーは式(2)で表される。

$$W = 2\pi a l \left(\frac{1}{\lambda_2} - \frac{1}{\lambda_1}\right) \left(1 - \frac{1}{\beta^2 n^2}\right) h \nu, \quad (2)$$

ここで $a = e^2 / \hbar c = 1/137$ 、Nは発生する光子数、 1は電子の軌道長、 β は光速に比べた電子の速さで あり、nは荷電粒子の通過領域の屈折率である。

またcherenkov光は特徴的な放射角を持っており、 コーン状に発光する。これはcherenkov coneと呼ば れ、その角度は以下の式(3)で表される。

$$\cos\theta = \frac{1}{n}, \quad (3)$$

また、OTR光は誘電率の異なる二つの物質中を荷 電粒子が通過する際に、媒質の境界面上で電磁波を 発生させる現象である。電子ビームを大気と異なる 誘電率を持つ物質に入射し、前方に発生するOTR光 の強度は以下の式(4)で表される。

$$\frac{d^2W}{d\omega d\Omega} = \frac{e^2}{4\pi^2 c} \frac{\beta^2 \sin^2 \theta'}{\left(1 - \beta \cos \theta'\right)^2}, \quad (4)$$

ここで θ 'は電子の進行方向からの角度、eは電気素 量を表す。

OTRもまた、発光強度に特有の角度分布を持ち、 発光強度のピーク角度は以下の式(5)で表される γ の逆数となる。

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}} = \frac{E}{0.511 MeV} \quad (5)$$

2. 実験

2.1 ダブルデッカー電子ビーム発生装置

ダブルデッカー電子ビーム加速器は、主に Nd:YLFピコ秒レーザー、レーザーフォトカソード RFガン、S-bandライナック、45°偏向電磁石によっ て構成されている。

Nd:YLFピコ秒レーザーから発生したレーザーパ ルスはビームスプリッタで2つに分けられ、光学 ディレイによって時間差が調整され、350psの整数 倍の時間差を持ってRFガンのカソードに入射する。 レーザーパルスはRF電子銃の下流に設置されたプ リズムにより、電子ビームと約2°の角度でカソード に入射する。 RFガンは、BNL—GunIVタイプであり、加速空洞 は1.6セルのSバンド(2856MHz)であり、フォトカ ソードはハーフセル側に取り付けられている。加速 空洞の材質は無酸素銅であり、カソードにも同様に 無酸素銅が使われている。フルセルには導波管が取 り付けられ、クライストロンから高周波を供給して いる。カソードから発生した電子は、5MeV程度に 加速され、ソレノイドによって空間電荷効果の影響 が抑えられる。

ビームを加速するためのライナックには、長さ 2mのS-バンド進行波形線形加速管を採用している。 これにより、ビームを加速するだけでなくエネル ギーの変調によってパルス圧縮が可能になる。

パルス圧縮装置として、2組の45°偏向電磁石と4 組の四極電磁石を用いた。ビームの先頭のエネル ギーを大きく、後ろのほうのエネルギーを小さくし、 また偏向電磁石と四極電磁石の磁場強度を調整する ことで、軌道長の差を利用しパルス圧縮する。

2.2 分析光発生実験

分析光発生の検証実験を行った。前回の実験で、 大気中での cherenkov 光を測定したが、 photo multiplierの電圧を2.9Vにしてもシグナルを測定する ことはできなかった。

ここではダブルデッカー電子ビームは使わず通常 の電子ビームを用い、またパルス圧縮も行わない。 ピコ秒レーザー、レーザーフォトカソードRFガン、 ライナックなどの実験装置はダブルデッカー電子 ビームを発生させるときと同様のものを用いて実験 を行った。パルス圧縮は行わないため45°偏向電磁 石を使用せず、ビームポートはストレートラインを 使った。光の検出にはphoto multiplierを用い、電圧 は2.0Vに設定した。なお、実験はbeam portを出て、 大気中で行った。

図1 cherenkov光発生実験図

まず、suprasil中でのcherenkov光の発生の実験を 行った。suprasilは厚さ0.5mm、大きさ25mm四方の ものを用いた。cherenkov光の放射角を考慮すると、 全反射によってsuprasilから光が出ないため、電子 ビームとsuprasil板の角度は45°とした。図1に実験装 置を上から見た図を記す。suprasilで発生した光はミ ラーで反射し、レンズで集光されてphoto multiplier に入射する。photo multiplierの直前にはバンドパス フィルターを設置し、波長ごとの光の強度を測定し、 スペクトルを取った。測定した波長は、cherenkov光、 OTR光ともに207, 297, 380, 413, 480, 548, 632, 719(nm)である。

次に、OTR光の発生実験を行った。beam portから ミラーまでの間の大気中で発生したcherenkov光を 遮断するために、ミラーの直前に厚紙を置いた。 OTR光は薄膜に荷電粒子を通過させて発生させる場 合には薄膜の裏と表の両方から出る。一つはビーム の入射する表面からの放射であり、薄膜表面から法 線を引いたときに、ビームと法線のなす角度と等し い角度をその法線となす方向である。もう一つは ビームが通り抜けた裏側での放射で、これはビーム の方向と等しい方向に光が出る。今回は実験上便利 な表側での放射を用いる。まず、ミラーをビームの 軌道と45°になるように設置し、HeNeレーザーを用 いて光学系を調整した。発生したOTR光は広がりを 持つため、レンズで集光しphoto multiplierで測定 を行った。図2はOTR光発生の実験を上から見たとき の模式図である。

3. 実験結果

発生したcherenkov光、OTR光の得られたスペクト ルを下の図3に示す。ビームの電荷量は、cherenkov 光の測定では3.3nC、OTR光の測定では2.6nCであっ た。いずれも大気中で発生するcherenkov光よりも 十分に大きい値を得ることができた。

Cherenkov光のほうが大きな強度が得られたのは、 石英中でのcherenkov光が全反射し、1/4程度に減っ てしまったことを考慮しても、大気中でのそれより およそ千倍程度の強度があるため大きかったことに 加えて、若干ビームがミラーに当たり、ミラーで発 生したOTR光が同様のパスを通って検出されたこと にも起因すると考えられる。

光の強度スペクトルは、ともに可視領域380nm付 近で最大値を取った。

図3 cherenkov光とOTR光のスペクトル

3. 結論

フォトカソードRFガンライナックを用いたダブ ルデッカー電子ビームの発生に成功し、そのビーム 特性を測定した。電荷量はそれぞれ2nC/bunch、エ ミッタンスは上のビームが3.8mm-mrad、下のビーム が5.8mm-mradであった。エネルギー分散の最小値は 上のビームが0.12%であり、下のビームが0.19%であ り、そのときのエネルギーは30.6MeVであった。ま た、パルス幅は0.6nCの時380fs (rms) であった。

分析光発生の実験に関しては、電子ビームの照射よりsuprasilから放出されたcherenkov光とAI膜から放出されたOTR光のスペクトルを測定し、大気中で発生されたcherenkov光に比べ、両方とも大きな光強度が得られることが分かった。

しかし、suprasilのような屈折率の高い物質から発 生したcherenkov光の強度が大きいが、放射角度が 45°付近であるため、全反射より光が集光できなく なる。そのため、屈折を用いた放射角補正が必要で ある。また、物質中でのパルス幅の伸びの問題も考 慮しなくてはならない。OTR光の場合、強度は若干 小さくなるが、放射角度が比較的小さく、発生も簡 単であるため、パルスラジオリシスの分析光として 有効であることがわかる。

参考文献

- [1] Y. Yoshida, et al., Radit. Phys. Chem., 60 (2001), 313-318.
- [2] K. Kozawa, et al., Nucl. Instrum. Meth. Phys. Res. Sect. A 440 (2000), 251-254.
- [3] J. Yang, et al., Proc. of this conference.
- [4] J. Yang, et al., J. Appl. Phys., 92 (2002), 1608-1612.
- [5] J. Yang, et al., Nucl. Instrum. Meth. Phys. Res. Sect. A 491 (2002), 15-22