Development of a C-Band 50 MW Pulse Klystron using Traveling-Wave-Type Output Structure

K. Yoshida^{1,A)}, K. Hayashi^{A)}, H. Asano^{A)}, M. Hino^{A)}, N. Matsuzaki^{A)}, M. Sato^{A)}, Y. Pu^{A)},
S. Fukuda^{B)}, S. Michizono^{B)}, M. Yoshida^{B)}, S. Matsumoto^{B)}, K. Nakao^{B)}, Y. Wang^{C)}

^{A)} Mitsubishi Electric Corporation

8-1-1 Tsukaguchi-Hommachi, Amagasaki, Hyogo, 661-8661

^{B)} KEK, High Energy Accelerator Research Organization

1-1 Oho, Tsukuba, Ibaraki, 305-0801

^{C)} IECAS, Institute of Electronics, Chinese Academy of Sciences

100080, Beijing, 2702

Abstract

SuperKEKB^[1] requires a new klystron to increase its positron acceleration energy from 3.5 to 8.0 GeV. The C-Band 50 MW pulse Klystron (PV-5050K) has been under development at Mitsubishi Electric Corporation in collaboration with KEK for SuperKEKB. The first tube had been built and evaluated the performances, 50 MW output power and 48.5% power efficiency at pulse width of 2.0 μ s and repetition rate of 50 pps.

進行波型出力空胴を用いたCバンド50MWクライストロンの開発

1. はじめに

C-Band50MWクライストロンPV-5050Kの設計は、 EMSYSを用いてシングル出力空胴にて50MWの出力 を確認した後、進行波型出力空胴の出力解析を MAGICにて行った。さらにHFSSにて3次元化を実施 した。2006年5月にKEKにて1本目の試験を行い、 RFパルス幅: 2.0 µ s、出力: 50MW、効率: 48.5% を確認した。

2. 設計

2.1 仕様

PV-5050Kの目標 性能を表1に、外 形図を図1に示す。 電子銃はEGUN とDGUNにて設計 を行い、MAGICに て確認を行った。 パービアンスは既

存電源のインピー ダンスと一致する ように、1.53 µ 表1:主要性能

項目	設計値	
周波数	5712MHz	
出力電力	50MW以上	
ビーム電圧	350kV	
ビーム電流	320A	
パービアンス	1.53 μ P	
RFパルス幅	2.5μ sec	
繰り返し	50pps	
ドライブ電力	500W以下	
利得	50dB以上	
効率	45%以上	

A/V^{3/2} とした。 350kV印加時のアノードーウェネルト間の最大電界 強度は21kV/mmとSバンド50MWクライストロン (PV-3050)程度とした。

空胴部は全5空胴からなり、5番目にあたる出力

空胴は、電界強度(35MV/m以下@50MW)を低く するために、4セル(2/3πモード)の進行波型出力 空胴を採用した。シミュレーションはKEKのXバン ドクライストロン開発で実績のあるMAGICにて実 施した^[2]。出力空胴に接続さ

れた2個の導波管から取り出

されたRF出力は、合成器を

介して、1個の高周波窓から

出力される(図2)。

図1: PV-5050K外形図

2.2 高周波窓

図2:出力回路写真

高周波窓(RFW-6)はセラミック部の電界強度が低い、ミックスモード型(TE₁₁+TM₁₁)を搭載した^[3]。RFW-6は2004年にレゾナントリング試験におい

¹ E-mail: Yoshida. Kiyohiko@ak. MitsubishiElectric.co.jp

て、パルス幅:2μs、繰り返し:50Hzで通過電力: 350MWを達成した。

2.3 進行波型出力空胴設計

MAGICにて入力空胴から出力空胴まで計算する と約1日かかる。そこで、空胴設計時間を短縮する ために、EMSYSとJAPANDISKで350kV、320Aの電 子ビームを用いて、シングル出力空胴にて出力 50MWを確認した後、シングル出力空胴を進行波型 出力空胴に置き換えてMAGICにて計算した。入力 空胴、中間空胴はEMSYSのパラメータを用いた。 それぞれの出力計算結果を図3(ビーム軌道)、図 4(入出力特性)に示す。最適化の結果、進行波型 出力空胴にて出力: 50.6MW、効率: 45.3%、出力空 胴内最大電界: 34.7MW/mを得た。

図3(b):進行波型出力空胴計算結果(MAGIC) (ビーム電圧:350kV、入力電力:168W、出力電力:50.6MW、 効率:45.3%、最大電界:34.7MV/m)

図4:出力計算結果(シングル、TW)

進行波型出力空胴の3次元化の手順を図5に示す。 MAGICモデルと等価な2次元のモデル(抵抗体 モデル)をHFSSにて作成し、これと同等な出力導 波管をつけた3次元モデル(導波管モデル)を設計 した。

MAGICモデル、抵抗体モデル、導波管モデルに おいて、第4セル中心(LineB、C)の電磁界分布を 比較した結果(図6)、同等の分布であることを確 認した。

導波管モデルにおいて、第1セルから第3セルま

でを元の形状に戻すことで、進行波型出力空胴の3 次元化(最終形状)を完了した。

3. 試験結果

PV-5050Kの1本目は、2006年5月にKEKにて評価 試験を実施した。出力電力の測定は水負荷の温度上 昇から求めた。さらに、方向性結合器でも出力を測 定した。

図7にRFパルス幅: 2.0 µ s、繰り返し: 50pps時 のビーム電圧に対する出力電力の変化を示す。ビー ム電圧:338kV (Es:43.1kV)、ビーム電流:305A (パービアンス:1.55 µ P)、入力電力:229Wにて 出力電力:50MW (効率:48.5%)を得た。計算結 果よりも低い電圧で50MWに達している。50MW出 力時の電子ビームのボディーロスは約3%である。 また、ゲインは53.4dBである。一方、入出力特性 (図8)は計算とほぼ同じ結果が得られた。

図9にRFパルス幅:2.0µs、繰り返し:50pps、 出力電力:50MW時のビーム電圧・電流、RF入力・ 出力波形を示す。出力波形の先頭の凹みはドライバ アンプの特性によるものであることを考慮すると、 出力波形は良く安定している。

図9:ビーム電圧・電流、RF入力・出力波形 図10にRF出力の周波数依存性を示す。今回は試 験時間の都合で十分なエージング(クライストロン

高周波窓、水負荷)が出来なかったため、出力電力 40MW程度において、周波数を5712MHz±1.5MHz変 化させて測定した。

表2に設計値と試験結果の比較をまとめた。RF パルス幅は試験電源の関係で2.0μsまでしか行えな かったが、既

表2: PV-5050K 試験結果

項目	設計値	試験結果	評価
周波数	5712MHz	5712MHz	0
出力電力	50MW以上	50.0MW	0
ビーム電圧	350kV	338.3kV	0
ビーム電流	320A	305A	0
パービアンス	1.53 μ P	1.55 μ P	0
RFパルス幅	2.5μ sec	2.0μ sec	\triangle
繰り返し	50pps	50pps	0
ドライブ電力	500W以下	229W	0
利得	50dB以上	53.4dB	\bigcirc
効率	45%以上	48.5%	Ó
集束コイル	既存品	既存品	\triangle
X線漏洩	20 µ Sv/h以下	大	X

4. まとめ

4 セルの進行波型出力空胴と1個の高周波窓を搭載したCバンドパルスクライストロンPV-5050Kは、 RFパルス幅: 2.0 μ s、出力: 50MW、効率: 48.5% を1本目で確認することができた。この成果は、複数の計算コードの組み合わせによる確認と、計算 コードの高精度化によるものである。

本クライストロンは性能確認試験後の2006年6月 に、加速管試験のRF源として約1ヶ月間使用され、 負荷のVSWRの変化に対しても安定に動作すること が確認できた。今後はKEK入射器にて連続運転を行 う予定である。

参考文献

- T. Kamitani et al, "Present status of the C-Band accelerator R&D of the KEKB injector linac for SuperKEKB project", Proceedings of the 29th Linear Accelerator Meeting in Japan, Funabashi, August 4-6, 2004
- [2] H. Tsutsui., "Two-Dimensional Modeling of a Klystron Traveling-Wave-Type Output Structure and its Empirical Justification", KEK Report, August 1999
- [3] T. Takenaka et al., "High Power test of C-Band RF window Using Resonant Ring", Proceedings of the 29th Linear Accelerator Meeting in Japan, Funabashi, August 4-6, 2004