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Abstract 

Electron Cyclotron Resonance (ECR) ion sources typi-
cally require tuning by experts to achieve best performance. 
We developed a Multi-Objective Bayesian optimization for 
the ECR of the Linear IFMIF Prototype Accelerator (LI-
PAc). The free parameters are: the RF power fed, the gas 
flow, the position of 2 RF tuners and the current of 2 sole-
noid coils. The machine learning approach demonstrated a 
fast convergence to a working point where not only the ex-
tracted beam current is >125 mA, but also the emittance is 
successfully constrained to be <0.25 π mm mrad, and the 
rms intra-pulse and inter-pulse current fluctuations are 
<3 mA. We present the detailed algorithm, testing method-
ology, results achieved and encountered challenges posed 
by the dimensionality of the problem and evolving state of 
the system.  

INTRODUCTION 
The physics involved in the plasma formation and the 

beam extraction from ECR ion sources is very complex and 
cannot yet be modelled and simulated to the required pre-
cision without any final tuning from experts with years of 
training. The use of Bayesian Optimization (BO) [1, 2] for 
particle accelerators has been proven very successful [3, 4, 
5] and in particular for ECR too [6, 7] . From recent litera-
ture, what seems still elusive is a multi-objective approach 
to the ECR tuning problem. The work here presented can 
be easily generalized to all ECRs, as their performances are 
regulated by the same fundamental physics processes, 
though this work focus on the study case of the Linear In-
ternational Prototype Accelerator (LIPAc)’s ion source. LI-
PAc is designed under the EU-Japan Broader Approach 
(BA) agreement to accelerate 125 mA of D+ to 9 MeV in 
continuous wave (CW) to verify all the key accelerator 
technologies required for a source of neutrons with energy 
spectrum and intensity for testing of materials relevant to 
fusion energy [8, 9, 10]. LIPAc’s ECR operates at 
2.45 GHz and it is designed to deliver 140 mA of D+ at 
100 keV in pulsed mode or CW with a rms current <1 % 
and a transverse normalized emittance <0.25 π mm mrad 
[11, 12, 13]. In previous commissioning campaigns, the 
system achieved excellent quality beam [14, 15], yet the 
final optimal performances are to be achieved and fine tun-
ing and experiments are ongoing. Furthermore the ion 
source requires often fine retuning after maintenances, due 
to ageing, when requiring different duty cycle in pulse 
mode, etc. For this reasons we developed a multi objective 

Bayesian optimization (MOBO) method to assist experts 
in reliably and rapidly achieving the highest possible ex-
tracted beam current within a required maximum intra and 
inter-pulse rms fluctuation and also a maximum transverse 
emittance. The tuneable source parameters we act upon 
are: the RF power fed, the gas flow, the position of two RF 
tuners and the strength of two solenoid for plasma mag-
netic confinement. 

SINGLE OBJECTIVE 
Before attempting to tackle the full scale problem, we 

follow a step-wise approach and perform single objective 
optimization of the strength of the two solenoid for plasma 
magnetic confinement to achieve the highest total ex-
tracted beam current I. All other tuneable parameters of the 
system are fixed. The kernel selected for the BO selected 
is the sum of Matern and white noise [16], while the acqui-
sition function is Upper Confidence Bound (UCB) [17]. 
The model is initialized with 5 data points acquired ran-
domly in the 2D variable phase space. Figure 2 shows the 
evolution of the surrogate model from Bayesian regression 
and its uncertainty. Each iterations, including computation 
of next candidate and measurement of current requires 
roughly 10 seconds. Figure 1 shows that after roughly only 
60 iterations (~10 minutes) the algorithm is able to con-
verge to the global maximum. From this iteration onward, 
the model can only rely on the further exploration of phase 
space and the uncertainty term of the acquisition function. 
Figure 2 indeed shows how the method starts to approxi-
mate a grid search.  

 
Figure 1: Convergence of single objective BO. Black: beam 
extracted current I at iteration; Green: maximum hold of I. 
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Figure 2: Surrogate model for LIPAc’s ECR (left) expected 
total extracted beam current I and (right) expected potential 
improvement from highest measured current including 
model uncertainty. Model is refined with further measure-
ment along the algorithm iterations from top to bottom. 

MULTI OBJECTIVE 
The time profile of the extracted beam current is some-

time unstable shot-to-shot and within the plateau of a pulse. 
This behaviour is mitigated after waiting a warm up time 
of the order of roughly one hour, but can be persistent for 

some settings. In general the intra and inter-spill fluctua-
tions of the total extracted beam current greatly varies 
within the phase space of tuneable parameters. We must 
maximize the total extracted beam current, while minimiz-
ing its rms fluctuation Std (measured in a time window of 
30 s). The ideal solution of any multi-objective problem is 
to identify the Pareto front of the competing targets. This 
is expected to be expensive in term of number of necessary 
measurements, while not being strictly necessary in several 
cases. In particular for the vast majority of ECR tuning it 
is sufficient to achieve the highest extracted beam current 
within a required maximum fluctuation over time. We pro-
pose the following method: 

• build 2 independent BO models from acquired 
data providing an expectation over the entire var-
iable phase space for: I = Iµ ± Iσ , Std = Stdµ ± Stdσ 

• search for phase space of input variables where 
Stdµ-βStd∙Stdσ≤3 mA 

• within this subspace select candidate input varia-
bles where Iµ + βI ∙ Iσ  is max 

• measure I and Std at this setpoint      
• update models and repeat 

where βI ,βStd are model hyperparameters that regulate the 
exploration/exploitation trade off and influence the con-
verge speed to optimum. 

Figure 3 shows the progress of the algorithm when tun-
ing four variables (the RF power fed, the amount of gas 
flow, and position of two RF tuners) with a fixed strength 
for the two solenoids magnets. Once more the used kernel 
is a sum of Matern plus white noise. The higher dimension-
ality of the problem prompt to initialize the first model af-
ter acquisition of 20 random sampled data points. After 
only 70 measurements (50 iterations of the algorithm) a 
very high total extracted current is achieved (I = 179 mA) 
with satisfactory stability (2.7 mA). This far surpasses the 
best achieved by expert (~150 mA) with the system condi-
tion on the specific same test day.  

 
Figure 3: Convergence of MOBO method to tune RF 
power, gas flow, two RF tuners (4 variables) of LIPAc’s 
ECR. Blue: extracted beam current measured I at iteration, 
error bar represent rms stability Std over 30 s. Orange: 
highest current measured up to iteration. First 20 data 
points are randomly sampled. 

Finally the same method is applied for all 6 target tuning 
variables at the same time. Figure 4 shows that after only 
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~40 measurements (20 random to start + 20 algorithm iter-
ations) the method converges again to very high extracted 
current (I = 176 mA) that are also extremely stable (Std = 
0.4 mA). 
 

 
Figure 4: Same as Fig. 3, but tuned parameters additionally 
include the strength of two solenoids magnets for plasma 
confinement (6 variables). 

INCLUDE OBJECTIVE ON EMITTANCE 
The developed method was demonstrated to converge to 

ideal solutions in a very sample efficient manner. Nonethe-
less Figure 5 shows how the found solution exhibits trans-
verse emittances significantly larger than optimum find by 
expert. It is clear that minimization of the normalized emit-
tance εn must be considered as a third objective. The devel-
oped algorithm is further modified as follows: 

• build 3 independent BO models from acquired 
data providing an expectation over the entire var-
iable phase space for: I = Iµ ± Iσ , Std = Stdµ ± Stdσ , 
εn = εn,µ ± εn,σ  

• search for phase space of input variables where 
both conditions are fulfilled: Stdµ-βStd∙Stdσ≤3 mA 
and εn,µ-βε∙εn,σ≤0.25 π mm mrad 

• within this subspace select candidate input varia-
bles where Iµ + βI ∙ Iσ  is max 

• measure I and Std at this setpoint      
• if new setpoint is significant, measure εn  
• update model and repeat 

 
The emittance of the LIPAc ECR is measured with an 

Alisson type scanner and requires ~10 minutes, while 
measurement of average total extracted beam current and 
its stability requires ~30 seconds. Emittance can be meas-
ured only when current is stable (<5 % Avg). Additionally, 
to minimize the test time, emittance is measured only at 
settings where: Std is within stability requirements and I is 
the highest seen OR the setpoint is significantly different 
than any previous measured. Figure 6 shows convergence 
of the method to I = 125 mA with Std = 2.5 mA and εn = 
0.21 π mm mrad. The test was performed during a day in 
which source performances were deteriorated (cause under 
study; possibly from ageing from previous intensive oper-
ations) and this value is comparable with best tuning efforts 
from expert on the day. The limited allocated testing time 
and the slow method did not allow to confirm potential 

convergence to even better setpoints. A considerable por-
tion of time is required by computation of next candidate 
measurement (~4 minutes). Faster calculation can be 
achieved by code parallelization and faster processing 
units, but the algorithm intrinsically suffers from requiring 
explicit calculation of BO model expectation over the en-
tire phase space to identify subspaces of feasibility. Fur-
thermore the method introduce a bias on the selection of 
candidate for emittance measurement which might results 
in insufficient exploration of neighbours solutions and pose 
too great of a significance on hyperparameter of distance 
from previous settings. The authors are committed to ad-
dress both concerns and further perfecting the method in 
future works. 
 

 
Figure 5: Transverse emittance measurement of exctracted 
D+ beam. Top: best expert tuning I=153 mA, εn= 0.31 π 
mm mrad; Bottom: best machine learning I=173 mA, εn= 
0.42 π mm mrad. 

CONCLUSION 
A multi-objective Bayesian optimization method was 

developed for ECR ion source and demonstrated with the 
LIPAc’s system as a study case. Six main variable param-
eters were tuned to obtain high extracted beam current with 
arbitrary required transverse emittance and intra/inter-spill 
stability. The algorithm requires order of ~50 iterations 
(with ~10 emittance measurements) to converge to similar 
solutions obtained by trained expert. The time required by 
the process is mainly dictated by computation and meas-
urement speeds. 
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Figure 6: Same as Fig. 4, but method include minimization 
of emittance. Orange: the highest beam current measured 
up to an iteration that satisfies both stability and emittance 
requirements. Green: rms normalized transverse emittance.  
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