PASJ2024 WEOA07

シンクロトロン用蛇腹構造ビームダクトの 渦電流抑制効果の数値的評価

NUMERICAL EVALUATION OF EDDY CURRENT SUPPRESSION EFFECT OF BELLOWS-STRUCTURED BEAM DUCT FOR SYNCHROTRON

川口秀樹^{A)}、加藤政博^{#, B,C)} Hideki Kawaguchi^{A)}, Masahiro Katoh^{#,B,C)} ^{A)} Muroran Institute of Technology ^{B)} HiSOR, ^{C)} UVSOR

Abstract

In an acceleration stage of a booster synchrotron, the fields of the lattice magnets increase quickly. Consequently, eddy current is induced on the beam duct surface particularly at the bending sections and the secondary generated magnetic field by the eddy current may cause serious influence on the electron beam dynamics. In the booster synchrotron of UVSOR, which was constructed more than 40 years ago, bellows-structured beam ducts were employed to suppress the eddy current. Although a rough estimation on the suppression effect was described in the design report, its quantitative accuracy is not clear. In this work, a 3-D numerical simulation is demonstrated to estimate the eddy current quantitatively. The simulation is based on the current vector potential method (T-method), which is effective to calculate current density distribution on a thin beam duct wall which has a complicated structure. The result clearly showed the eddy current suppression effect of the bellows-structured duct.

1. はじめに

分子科学研究所の UVSOR は周長 53 m、ビームエネ ルギー750 MeV の小型低エネルギー放射光源である[1]。 UVSOR は 1983 年から 40 年以上にわたり稼働を続けて いるが、その間、大規模な高度化改造が 2 回実施され[2, 3]、現在の光源加速器は UVSOR-III と呼ばれている。そ れらの改造はストレージリングの光源性能向上に重きを 置いたものであり、入射器、特にブースターシンクロトロ ンでは、電源類の更新は行われたものの、加速器本体 の大部分は 40 年以上前に製作されたものが今日でも使 用されている。

UVSOR の加速器配置は Fig. 1 に示す通りである。電子銃でつくられた電子バンチは小型直線加速器にて 15 MeV まで前段加速され、ブースターシンクロトロンに 送られ、そこで 750 MeV まで加速されたのち、ストレー ジリングに送られ蓄積される。建設当初、このシンクロトロ ンは最大エネルギー600 MeV、繰り返し約 3 Hz で運転 されていた。このためストレージリングでは 600 MeV で入 射後、750 MeV まで加速を行っていた。しかし、2000 年 代後半にストレージリングへのフルエネルギー入射を可 能とするための電源増強が行われ、これによりトップアッ プ運転が可能となった[4]。なお、750 MeV 運転時の繰り 返し周波数は 1 Hz である。

一般にシンクロトロンでは偏向磁石の磁場強度は電子 エネルギー増加に同期しながら上昇する。この磁場の時 間変化により真空ダクトに渦電流が発生し、この渦電流 により2次的に生成される磁場が電子軌道に悪影響を 及ぼす可能性がある。UVSORのブースターシンクロトロ ンでも設計段階でこの点は検討されており、Fig.2に示 すように渦電流を抑制するために蛇腹構造の真空ダクト

Figure 1: Accelerator layout of UVSOR.

が採用されている。蛇腹構造にすることで、渦電流に対 する抵抗を実効的に大きくするという考え方である。この 渦電流の抑制効果は、これまで近似解析的には評価さ れていたようであるが[5]、高い精度での定量的評価に関 する報告は見当たらない。UVSOR ブースターシンクロト ロンのビームダクトは近年真空リークが起き始めており、

[#] mkatoh@hiroshima-u.ac.jp

その更新を進めようとしている[6]。本研究では、この機会 に今後の装置設計や運転の基礎となるデータとすべく、 蛇腹構造が渦電流発生に与える影響を、電流ベクトルポ テンシャル法(T法)[7-11]による薄板近似渦電流数値 解析を用いて評価することを試みた。これまでに得られ た結果の一部を報告する。

2. ブースターシンクロトロンビームダクト

UVSOR ブースターシンクロトロンで用いられている蛇 腹構造ビームダクトの外観をFig.2に示す。ダクトの断面 形状はレーストラック型であり、電子ビームの進行方向に 波打つ蛇腹構造となっている。このような断面形状のダ クトに時間変動する空間的に一様な外部磁場が印加さ れた場合に発生する渦電流の概要を Fig.3 に示す。外 部磁場が誘起する渦電流は、ダクト壁で磁力線に巻き付 くように生じるものの、ビーム進行方向に対する系の一様 性により、渦電流のビーム軸に垂直方向の成分は打消し 合い、ビーム進行方向の成分のみが残る。結果として渦 電流は主にダクトの側壁を流れ、かつ、左右で逆方向に 流れる。この渦電流の作る二次的な磁場により、ダクト内 部では、外部磁場が弱められる。ダクトの側面部分に電 流が集中するため2次的な磁場は一様ではなく、特にそ の六極磁場成分は周回ビームの安定性に影響を与える 可能性がある。

Figure 2: Bellows structure duct of UVSOR booster synchrotron. Here, A = 20 mm, R1 = 17 mm, R2 = 23 mm, B = 74 mm, ϕ = 5.1 mm, h = 5.7 mm, t = 0.3 mm, R = 1.8 m, θ = 60 deg, W = 120 mm.

Figure 3: Eddy current induced on beam duct.

電流ベクトルポテンシャル法による渦電 流解析

印加する磁場の時間変動を1Hz、ビームダクト壁の材 質をSUSとすると表皮厚さは1m程度となり、ビームダクトの厚さ(UVSORの場合0.3mm)に比して非常に大きい ため、渦電流はダクトの厚さ方向には一様に流れると考 えてよい。このため、本研究では、このようなケースの解 析に向いている電流ベクトルポテンシャル法(T法)[7-11]を用いて、渦電流解析を行う。T法渦電流解析では、 導体中の渦電流密度Jが、∇・J=0を満足することから、 未知量の電流ベクトルポテンシャル Tを用いて、

$$J = \nabla \times T \tag{1}$$

と表すことができるとして、**T** に関する次の微積分方程式 を解く。

$$\nabla \times \frac{1}{\sigma} \nabla \times \boldsymbol{T} + \mu_0 \frac{\partial \boldsymbol{T}}{\partial t} + \frac{\mu_0}{4\pi} \int_{S} \frac{\partial T_n}{\partial t} \frac{(\boldsymbol{x} - \boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|^3} dS' = -\frac{\partial \boldsymbol{B}_0}{\partial t}$$
(2)

ここで、 σ は導体の導電率、S は導体表面、 T_n はT のS 上の法線成分、 B_0 は外部印加磁場である。ここで、導体表面での電流の法線成分がゼロであることから、Tは、S の表面での法線ベクトルをnとして

$$\boldsymbol{T} \times \boldsymbol{n} = 0 \tag{3}$$

なる境界条件を満たし、さらに、ゲージ任意性を固定す るため、導体中で次のゲージ条件を満たすものとしてい る。

$$\nabla \cdot \boldsymbol{T} = 0 \tag{4}$$

式(2)により求まった T から式(1)により、導体中の渦電流 J の分布を計算し、さらに、この電流分布からビオ・サ バール則を用いて渦電流 J が導体外部につくる磁場を 求める手順となる。なお今回の計算では磁場の計算に おいて磁極の存在は無視した。導体壁が表皮厚さに比 して非常に薄いことから渦電流は薄板導体上で 2 次元 状に分布をして流れているとみなすことができ、したがっ て、T は、導体の各位置で法線方向成分 T_nのみを持つ ことになり、実質的な未知量はこの T_nのみを持つ ことになり、実質的な未知量はこの T_nのみとなる。T は、 渦電流に対するベクトルポテンシャルであり導体上での み定義されることから、シミュレーションにおける数値モ デルはこの薄板導体のみでよく、これは T 法の大きな利 点である。これに対し、差分法や有限要素法では導体外 部に広がる空気領域も解析領域として含めて離散化す

Figure 4: Numerical models of beam duct (unit period), flat structure (left) and bellows structure (right).

PASJ2024 WEOA07

る必要が出てくる。

4. 数值解析例

本研究で渦電流解析するビームダクトの数値モデル を Fig. 4 に示す。Figure 2 に示すように 60 度偏向電磁 石中の軌道長 1,885 mm に対し、1つの蛇腹構造の進行 方向(z 軸)の長さ φ は 5.1 mm と非常に小さいため、こ こでは、1つの蛇腹構造のみを数値モデル化し、ビーム 方向に対し周期境界条件を課した近似モデルとして解 析 する。Figure 4 には平坦なダクト壁の場合(flat structure)と蛇腹構造(bellows structure)の場合の数値モ デルを示してある.平坦構造の数値モデルのサイズは、 蛇腹モデルの内側と同じサイズとなっている。

Figure 5: Excitation pattern of bending magnet.

Figure 4 に示す数値モデルに対し、Fig. 5 のように約 0.5 秒間で0T から1T まで増加するような時間波形で z 方向下向きの一様磁場を印加したときに誘起される渦 電流分布を Fig. 6 に示す。上述の考察のとおり、平坦な 構造の場合も蛇腹構造の場合もいずれも渦電流は主に ダクト側面をビーム方向(x 方向)に、かつ、側面壁左右 で逆方向に流れることがわかる.また、誘起された渦電 流密度の最大値で比較すると、蛇腹構造の場合は、平 坦な構造に比して、約43%の値となっており、蛇腹構造 が渦電流抑制効果を有することが確認できる。つぎに、 ダクト壁に誘起された渦電流によりダクト内部に生じる磁 場強度の空間分布の時間変化を Fig. 7 に示す。平坦構 造、蛇腹構造モデルのそれぞれの場合のビーム軌道に 対し水平横方向の観測ライン(Fig.4 に示す Line A)上 の磁場鉛直方向(z 方向)成分の時間信号波形を示す. 蛇腹構造の場合は平坦構造に比して、約37%の磁場 強度となっており、渦電流そのものののみならず、ダクト 内部に生じる磁場もさらに効果的に抑制されることがわ かる。

(b) bellows structure

Figure 7: Generated magnetic field by eddy current along transverse observation line (line A of Fig.4).

5. まとめ

分子科学研究所 UVSOR のブースターシンクロトロンに用いられている蛇腹構造のビームダクトに対し電流ベクトルポテンシャル法による数値シミュレーションを行い、その渦電流抑制効果の定量的評価を試みた。平坦構造と蛇腹構造のダクトを同じ磁場印加条件で比較し、いずれのモデルでも、渦電流は主にダクト両側面壁を逆

PASJ2024 WEOA07

方向に流れること、さらに、蛇腹構造とすることで、平坦 構造に比して発生する渦電流強度は半分以下に抑制さ れることがわかった。また、この渦電流により軌道上に二 次的に発生する磁場も抑制されることがわかった。なお 今回の計算では、渦電流に依る磁場の計算において磁 極の存在は無視しており、磁極存在下での磁場の評価 は今後の課題である。今回の計算では、ダクトは十分に 長いとし周期条件を課したが、短いダクトの場合、端部の 効果がどのように表れるかなど、計算の応用範囲を高め る検討も今後の課題である。解析的な公式による計算や 実測との比較など、本計算手法の有効性や精度の評価 も今後進めていきたい。

謝辞

本研究の遂行にあたり UVSOR 施設職員の皆さんに 真空ダクトや電磁石に関する情報収集でご協力をいた だいた。この場をお借りして感謝いたします。

参考文献

- [1] H. Ota et al., J. Phys.: Conf. Ser. 2380 (2022), 012003.
- [2] M. Katoh et al., AIP Conf. Proc. 705, 49-52 (2004).
- [3] M. Adachi et al., J. Phys.: Conf. Ser. 425 (2013), 042013.
- [4] M. Katoh et al., AIP Conf. Proc. 1234, 531-534 (2010).
- [5] 渡辺誠他、「入射用シンクロトロンの設計」、UVSOR-7 (1981).
- [6] 林憲志他、PASJ2024, Yamagata, Japan, Jul. 31-Aug. 2, 2024, this meeting.
- [7] 亀有, 福本, 橋爪, プラズマ・核融合学会誌, 第 72 巻第 11 号 (1996) pp.1223-1234.
- [8] A.Bossavit, J.C.Verite, IEEE Trans. on Magnetics, MAG-18 (1982) p.431.
- [9] K.Miya, T.Sugiura, H.Hashizume, IUTAM Proc. Tokyo, North Holland (1986).
- [10] C.Chen, Y.Yoshida, K.Miya, Advanced Computational and Design Technique in Applied Electromagnetic System, Elsevier Science B.V., (1995) pp.97-100.
- [11] A.Kameari, J. of Computational Physics, Vol.42, Issue.1 (1981) pp.124-140.