PASJ2024 THP089

10 mA CW ビーム運転に向けた compact-ERL 電子銃の準備状況 CURRENT STATUS OF compact-ERL ELECTRON GUN PREPARATION FOR 10 mA CW BEAM OPERATION

山本 将博^{*,A)}, 阪井 寛志^{A)}, 内山 隆司^{A)}, 長橋 進也^{A)}, 田中 オリガ^{A)}, 倉田 正和^{A)}, 谷川 貴紀^{A)}, 本田 洋介^{A)}, 東 直^{A)}, 野上 隆史^{A)}

Masahiro Yamamoto^{*,A)}, Hiroshi Sakai^{A)}, Takashi Uchiyama^{A)}, Shinya Nagahashi^{A)}, Olga Tanaka^{A)}, Masakazu Kurata^{A)},

Takanori Tanikawa^{A)}, Yosuke Honda^{A)}, Nao Higashi^{A)}, Takashi Nogami^{A)}

^{A)} High Energy Accelerator Research Organization (KEK)

Abstract

Since 2016, the KEK compact-ERL (cERL) has been conducting research and development for industrial applications. In this R&D, a high-intensity EUV-FEL light source combining an ERL and a free electron laser is being developed for use as a state-of-the-art light source for semiconductor lithography. There are various issues to be solved in order to realize this light source, one of which is the stable supply of a high-brightness electron beam at the 10 mA level from the electron gun. The cERL is currently preparing to increase the current of the electron gun.

1. はじめに

KEK で研究開発が進められているエネルギー回収型 線形加速器実証機の compact-ERL では 2016 年に 1 mA CW ビームのエネルギー回収周回運転を実証した [1]。 その後、様々な実験が進められてきたが、CW ビームの 最大電流の上限値はその時から現在まで 1mA のままで ある。一方で、産業応用の利用を考えたとき、より大 きなビーム電流が必要となる。特に現在検討を進めて いる ERL を利用した半導体露光用 EUV 光源としての 10 kW 級の大強度 FEL 発振 [2] を得るためには、電子 銃には 10 mA 相当の安定した高輝度の CW ビームの供 給が必要不可欠となる。具体的には、バンチ電荷量 60 pC、繰り返し162.5 MHz、平均電流 9.75 mA、規格化エ -ミッタンス ~1*mm・mrad* 相当以下の電子ビームを数 週間以上安定に供給し続けることが目標となる。そこ で、早期に電子銃からの 10 mA CW 電子ビーム生成試 験を行う環境を整えるため、2019 年度より大電流ビー ム生成に関する課題に対して対応・準備を進めてきた。

2. これまでの履歴、問題点とその対処

この章では、現在の CW ビーム電流 1 mA 運転開始 後の電子銃の主な履歴とその中で明らかになった問題 やその対処についての概要を解説する。

2.1 500 kV 運転

2016 年時の 1mA ビーム供給開始時の電子銃の運転 電圧は 390 kV であり、設計電圧 500 kV での運転は出 来ていない状況であったが、その後の電子銃の高電圧 コンディショニングおよびそこで得られた放電電圧閾 値の発見 [3] から、2017 年より 500 kV の安定運転を開 始した。その後、後述のインバーター電源更新・調整 作業前までの通算時間で 1300 時間以上、500 kV 状態を 無放電で保持することができた (Fig.1)。この結果から 500kV 相当の加速電圧の状態で電子銃を長期的に運転 する技術は確立できたと考えている。

Figure 1: Time history of 500 kV voltage applied and beam delivery time from cERL electron gun.

2.2 高電圧電源

2.2.1 インバーター電源の増強と放電トラブル

一方で、ビーム電流に関してはこれまでの電子銃の ビーム運転試験の実績から主に高圧発生部へ電力を供 給するインバーター電源およびその間を接続するケー ブルの問題から加速電圧 500 kV の状態で出力電流 2mA 以上を供給し続けることが難しい状況であり、2019 年 度に最大出力を 10kW (500 kV, 20 mA 相当)となるイ ンバーター電源を製造した。2020 年度にこのインバー ター電源を電子銃の高圧発生部と接続し、マッチング・ 出力調整を行ったが、その過程で高圧電源の電圧・電 流のフィードバック配線がされていない状況で出力を 行ったヒューマンエラーにより電子銃へ電源電圧の最 大値(およそ 600kV 相当)が瞬時に出力され、大きな 放電事象が発生した。

このトラブルにより電子銃の高圧発生部と電子銃高 圧部を接続する保護抵抗が焼損(Fig.2)、電子銃真空も 異常放電により真空計がエラーで停止した。その後、 真空復旧、高圧発生部の健全性のチェック、従来のイ ンバーター電源での高電圧印加試験を実施したところ、 280 kV 以上で電界放出暗電流が増加する状況となった。 電子銃真空容器部を大気開放し、内部を調査したと

^{*} masahiro.yamamoto@kek.jp

Figure 2: Resistors in the high-voltage power supply output section of a cERL electron gun that were burned out due to an accidental discharge event.

(a) Current HFT.

(b) Enhanced version of HFT.

Figure 3: Photographs of the current and enhanced versions of the high-frequency transformer (HFT).

ころ特に大きな放電痕などは見つからず、電界放出が 疑われるカソード電極表面をリントフリーベンコット での電極の拭取り、セラミック管内部および chamber 内をイオンガンによるダストの除去を行い、1 週間の ベーキング、高電圧印加セットアップ後に高電圧コン ディショニングを実施する。この工程で 500 kV 安定印 加電圧に到達する前に電界放出源が発生するトラブル が数度発生し、その度に大気開放と電極の拭取りから やり直し、現在は加速電圧 450 kV で運転している。

2.2.2 高周波トランスの増強

インバーター電源の出力増強の他に、その出力を高 圧発生部へ引き込む feedthrough 部、および高圧発生 部入力部のコッククロフト・ウォルトン回路 (C-W 回 路)入力部に接続するインバーター出力を 1:96 で昇圧 する高周波トランスの発熱も問題であることがこれま での運転で判明した。高周波トランスの発熱は高電圧 出力を制限する問題となるため、現状の容量 5kVA も の (Fig.3a)より十分余裕を持たせた 18.5kVA(Fig.3b)と した。

製作した高周波トランスについては、実際の使用環境と同等の条件で10kW相当の電力を問題なく伝送できることを確認する試験を実施した(Fig.4)。具体的には、高周波トランスを試験用のSF6容器内へ設置し、SF6環境中で上記製作した増強版のインバーター電源

出力をフィードスルーを介して高周波トランスへ入力 し、昇圧された24 kV,約30 kHzの出力が高電圧フィー ドスルーを介して大気側に組み上げられた1段のC-W 回路の入力段へ接続、C-W回路出力として、45kV DC, 210 mA (9.5 kW)の約5時間出力を確認した。この時、 コアに設置した熱電対により動作中の温度も測定して おり、コア温度は約80℃であった。この試験結果から、 500 kV, 10 mA (5 kW)の出力に必要な電力の伝送はこの 高周波トランスで問題無く行える確認ができたと考え ている。

2.3 真空リーク

前述の放電トラブルからの復旧作業において繰り返 し電子銃のベーキングを行ったが、チタン製の電子銃 真空容器とセラミック部と外周の SF6 タンク部を接続 するステンレス容器側の接続部で真空リークが毎回発 生する問題に見舞われた。これは、線膨張係数がチタ ンは SUS の約半分と小さいこと、そして問題の接続部 は ICF406 と口径が大きいことが原因となっていた。こ の問題に対しては、これまでのチタン-ステンレスフ ランジの接続部に厚手のガスケットを使用することで ベーキング時のリークを抑えられる経験から使用する 銅ガスケットの厚さを通常の 2 mm から 5 mm の厚さに 変更することで対応した (Fig.5)。

この対処を行ったことで、その後電子銃ベーキングの際でも真空リークを起こすことが無くなり、ベーキング後は 10⁻¹⁰ Pa の極高真空を安定的に得ることができる状況となっている。

2.4 入射部 BPM

電子銃と入射超伝導加速空洞の間の区間の入射部は 約 1m と距離は短いが、その領域内に2台のソレノイ ド、5台のステアリング電磁石、2台のスクリーンモ ニター、カソード観察ミラー、可動式ファラデーカッ プ、ドライブレーザー導入部、バンチャー空洞が設置 されており、BPM は2台のソレノイド位置に配置され ていた。この BPM は特に CW 運転時にビームの位置を 計測する目的で設置されたものであったが、BPM 電極 のフィードスルーに使われているコバールが磁性体で あるため、ソレノイド磁場が歪められ、ソレノイド後 方のスクリーンモニターでビームのプロファイルが四 角形に歪んでしまう問題がある事がわかった (Fig.6a)。

この問題に対応するため、上記の電子銃真空リーク 問題の対処と同時に、入射部の BPM の取外し作業も行 い、BPM 電極起因のソレノイド磁場歪の影響を取り除 いたが、その後の 2023 年 11 月の運転で特に大電荷運 転においてビームのプロファイルが三角形になること が確認された (Fig.6b)。現在、その原因を調査している が、前述の電子銃真空リーク対処の作業において、電 子銃電極の位置アライメントがずれた影響がその原因 の一つと考えている。

3. CW ビーム運転

3.1 CW ビーム 1 mA エネルギー回収運転

2023 年 11 月の cERL 運転では、挿入光源 chamber へ ビームを通す条件で初めて 1mA 相当の CW ビームのエ **PASJ2024 THP089**

(a) Circuit connection configuration for HFT testing. (b) HFT test setup. Figure 4: Schematic diagram and photograph of the high-frequency transformers output test system.

(a) Photo of current and thick gasket (b) Replacement of new thick gasket. Figure 5: Photos of the thick gasket introduced to prevent leaks and the replacement of the gasket on the ICF406 flange at the leak location.

Figure 6: Beam profile at the screen monitor located downstream of the solenoid before and after BPM removal.

ネルギー回収運転が可能となった [4,5]。それまでもこ の調整が試みられてきたが、特に垂直方向のビームダ クトが狭くなる挿入光源エリアでのビームロスを十分 抑えられることが難しく、容易ではない状況であった。 今後 10 mA の CW ビーム周回、エネルギー回収を行う 場合、更なるビームロスの低減の他、追加遮蔽などの 検討も必要であり、調整もこれまで以上に難しいと推 測される。

3.2 CW ビーム 1 mA 主ダンプ直接輸送運転

一方で、電子銃からの 10 mA の CW ビームの生成は、 電子銃の大電流運転時に問題となるフォトカソード寿 命の評価や、主加速空洞までの低エネルギー領域の大 電流ビーム調整、コリメーターやビームダンプ、ビー ムロスモニターなど大電流ビーム運転に必要な機器へ の対策などを進めるために必要である。これをいち早 く実現させるため、入射器加速空洞で加速されたビー ムは、主加速空洞では加速せず、直接ビームダンプへ CW ビームを輸送する運転を検討している(Fig.7)。こ の方法であれば、ビームエネルギーは入射加速空洞出 口の数 MeV 相当となるため放射線レベルの抑制および 遮蔽のし易さの点で問題を解決しやすく、ビーム調整 の点からも周回およびエネルギー回収する場合と比べ 非常に容易となる。

2023 年 11 月の運転では、これを模擬する 2.9 MeV, 800 µA (~2.3 kW) の約4時間の CW ビーム主ダンプ直 接輸送運転も実施した (Fig.8)。このビーム調整におい て、電子銃からビームダンプまでの輸送調整は比較的 容易と思われたが、CW ビーム1 mA 運転可能なレベ ルのビームロスに抑えるためには CW ビーム周回運転 と同様に入射器直後の 2 台のビームコリメーターの挿 入が不可避であった。コリメーター挿入前の主なビー ムロスは主加速超伝導空洞の手前付近であることが周 囲の放射線モニターから推定されたが、この運転時に は詳細なビームロス場所・範囲を特定するためのモニ ターがなく、詳細は不明である。

ダンプラインへ導かれたビームは、ダンプへ入射す る少し手前に配置されているラスタリング電磁石に よってビームをビームダンプの口径に合うように XY 方向に蹴ってスイープし、ビームダンプ表面が受ける

Figure 7: Path diagram of direct CW beam transport to the main beam dump. The beam accelerated at about 3 MeV in the injector superconducting cavity (Inj-SC) is directly transported to the main dump beamline without acceleration in the main linear superconducting cavity (MLSC).

Figure 9: Photo of the main beam dump and its cooling water pipes.

パワー密度を抑えるビーム制御を行う。ビームをスイー プする範囲はビームダンプ直前のスクリーンモニター およびビームダンプをファラデーカップとして調整時 のバーストビームの電流波形のモニターを行いながら 調整を行っている。

これに加え、大電流 CW ビーム運転では、ビームパ ワーの増加に伴いビームダンプの冷却水の流量および 冷却水の温度変化からビームパワーの測定も可能にな る。cERL の主ビームダンプは円周方向に4等分割さ

Figure 10: QE history of GaAs photocathode during cERL operation in November 2023.

れた冷却水経路から構成されている (Fig.9)。それぞれ の系統で受けるビームパワーの測定が可能になるため、 ビームが均等にダンプへ入射されているかを判断する 一つの有用な指標になる。

前述の主ダンプ直接輸送 CW ビーム運転時は、4 系統 の冷却水経路のうち、2 系統ずつが直列接続され、それ ぞれの系統に 15.5 L/min の流量の冷却水が流れ、出入口 の温度差が共に 1 ℃観測されている。この時のビーム パワーは 2.3 kW であり、上記冷却水が持ち去るパワー の合計 2.2 kW とほぼ一致した。

3.3 カソード寿命

今回のこの CW ビーム運転でのフォトカソードの量 子効率 (QE)の低下量は 0.1% 程度であり、供給電荷量 は約 11 Coulomb であった。11 月の運転の総供給電荷量 は約 30 Coulomb、フォトカソードの QE は概ね 5 % 以 上を維持した (Fig.10)。フォトカソードへ照射するレー ザー位置は、逆流イオンの衝撃が最も起きうる電界中 心位置から 2mm 程度離れた位置を選んでおり、この程 度の供給電荷量でも QE の著しい低下が起きなかった と考えられる。また、この結果からも電子銃の真空の 状態は良好であったことがわかる。

PASJ2024 THP089

4. まとめと今後

ERLの産業利用として、半導体露光用大強度 EUV-FEL 光源の検討が進められており、電子銃には 10 mA 級の高輝度の CW ビーム供給が求められている。KEK の cERL 電子銃において、この要求を満たすべく高電圧 電源の増強、真空リーク問題の対処を進めた。周回部 に挿入光源ビームダクトが挿入された状態で 1 mA 級 の CW ビームのエネルギー回収運転を達成したが、今 後 10 mA 級の運転を達成するためには、ビームロスの 低減ならびに放射線対策が必要となり、容易ではない ため、最初の 10 mA CW ビーム運転は、主超伝導加速空 洞で加速しない主ダンプ直接ビーム輸送で行う検討を 進めており、2023 年 11 月に模擬的な 2.9 MeV, 0.8 mA の主ダンプ直接 CW ビーム運転を実施した。

このビーム運転では、主加速空洞手前の領域でビームロスが観測されたが、詳細なビームロス位置を特定 するため今後は半導体とシンチレーターを組み合わせ た簡易なビームロスモニターを多数分散配置する計画 であり、大電流ビーム運転で重要となるビームロス調 整を進めていく予定である。また、主ダンプの4経路の 冷却水温度、流量から各径路が受けるビームパワーの 推定が可能であることを確認した。今後の大電流化に より数十 kW のビームを受けつづけることになる。長 期的に主ダンプで偏りなくビームを安全に受け続ける ために、今後、主ビームダンプの冷却水4経路はそれ ぞれ独立に冷却、計測する予定である。

今後の具体的な方針としては、第1段階としてビー ムダンプ直接輸送モードで最大エネルギー4 MeV,10 mA(最大ビームパワー40 kW)運転を目標とし、現状 の改造前の高電圧電源で可能な範囲で電流をあげつつ、 2年目後半で電子銃高圧電源を増強版(インバーター& 高周波トランス)へ切替、3年目より電子銃より10 mA 相当のビーム供給を開始したいと考えている。

またこれに伴い、フォトカソードとしてこれまで利 用してきた NEA 表面の GaAs 半導体からより耐久性の 高いアルカリ金属系薄膜へ変更する予定である。これ は、GaAs半導体フォトカソードは初期の量子効率が高 い利点はあるが、真空環境に敏感であり、特に今後1 mA以上の大電流 CWビーム生成時は、電子銃近傍の 電子ビーム軌道上で発生するイオンの電子銃への逆流、 フォトカソードへの衝撃の影響が避けられないことが その理由である。さらに大電流運転時のフォトカソー ドの寿命の改善策については、米国の LANL、名古屋大 学を中心とした研究チームで原子層レベルの保護膜の 実装の研究開発も進行中である [6,7]。

謝辞

電子銃機器の改造・保守に伴う作業について、三菱 システムサービスの飯島寛昭氏、NATの山田浩気氏の ご協力を頂きました。東日本技術研究所の路川徹也氏 には制御系構築ならびにロスモニター開発のご協力を 頂きました。放射線科学センター吉田剛氏、ならびに 加速器第6研究系濁川和幸氏には放射線見積り・放射 線安全に関するご協力を頂きました。皆様に感謝申し 上げます。

参考文献

- [1] M. Akemoto *et al.*, *Nucl. Instr. and Meth.* A 877, 197-219 (2018).
- [2] N. Nakamura et al., Jpn. J. Appl. Phys. 62, SG0809 (2023).
- [3] M. Yamamoto and N. Nishimori, *Appl. Phys. Lett.* 109, 014103 (2016).
- [4] M. Kurata *et al.*, Proceedings of IPAC'24, WEPC22, 2010-2013 (2024). https://doi.org/10.18429/ JACoW-IPAC2024-WEPC22
- [5] M. Shimada, PASJ2024, Yamagata, Japan, Aug. 2024, WTSP14, this meeting.
- [6] L. Guo et al., Scientific Reports 13, 2412 (2023).
- [7] F. Liu et al., ACS Appl. Mater. Interfaces 14, 1710-1717 (2021).