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Abstract
Optimization of the quantity of interest of an RF cav-

ity, such as the frequency and the quality factor, requires
calculation from many samples with different geometric
configuration with each of them requiring finite element
method simulation. Geometric modification of smaller com-
ponents requires finer mesh thus a very high computational
cost requirement. In this research, we propose a physics in-
formed neural network model to solve eigenvalue problems
for the lowest frequency mode of a fully three dimensional
RF cavity. Five loss functions are used, related to the differ-
ential equation (𝐿in), boundary condition (𝐿bc), non-trivial
solution (𝐿norm), divergence free constraint (𝐿div) and mode
forcing constraint (𝐿m). The input for the neural networks
are the sampled spatial position, while the output is the value
of the RF magnetic and electric field at the corresponding
spatial position. The sampled positions are chosen to be
related to the nodes of a generated unstructured mesh of
the cavity model. The result shows that the neural network
model could give an accurate prediction of the frequency
and the field for the lowest mode.

INTRODUCTION
In recent years, there has been significant progress in

neural networks across various domains, including medical
imaging, language processing, and image recognition [1]. A
particularly interesting application in science and engineer-
ing is the use of neural networks to solve partial differential
equations (PDEs), known as physics-informed neural net-
works (PINNs) [2]. These networks incorporate extra loss
functions that are related to the physical equations, in addi-
tion to the usual data-based loss functions. Additionally, it is
possible to train these networks without any data, a method
sometimes referred to as data-free surrogate networks (DF-
SNet) [3].

PINNs have some properties that is not shared with the
more traditional numerical techniques used to solve partial
differential equation. PINNs are not plagued with curse of
dimensionality, there is no error accumulation [4], transfer
learning possibility [5], and inverse design problem can be
treated systematically [6]. Not to mention the parallelizabil-
ity of neural network, which means that huge-sized problem
can be solved concurrently with a large, parallel setting.

In this paper, a DFSNet scheme for electromagnetic RF
eigenmode is proposed. The model is a simple fully con-
nected network with loss functions relevant to the electro-
magnetic equations inside a perfectly conducting resonant
cavity. The model is quite similar with network proposed to
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solve Schr¥odinger equation for one dimension [7] or two di-
mension [8] with infinite potential well setting, with the main
difference being the loss functions and how the eigenvalue
is calculated.

Transfer learning and the less impact from curse of di-
mensionality is the main motivation of the proposal of this
scheme, which might be useful for cavity optimization prob-
lem. Several authors have published cavity optimization
scheme using evolutionary algorithm with conventional fi-
nite element as the evaluation function [9]. Each of function
evaluation will require simulation from scratch, which might
be excessive when the variation is small [10, 11].

METHODS
We propose a fully connected neural network trained with-

out external data to calculate the electromagnetic excitation
inside a perfectly conducting resonant cavity. Three neurons
representing position are used as the input, and six fields
which correspond to three electric field components and
three magnetic field components as the output. The network
are trained to minimize Helmholtz equations related to the
Maxwell equatios, along with the divergence free equation
as the following [12](

∇2 + 𝜇𝜀𝜔2
)
𝜓𝑖 = 0 𝑖 = 1, ..., 6 (1)

∇ · ®𝐸 = 0 (2)

∇ · ®𝐻 = 0 (3)

with 𝜓𝑖 represents the component of electric or magnetic
field. Additionally, the network also need to satisfy the
boundary conditions given by

®𝑛 · ®𝐻 = 0 (4)

®𝑛 × ®𝐸 = 0 (5)

where ®𝑛 is the normal vector perpendicular to the surface of
the resonant cavity at the sampled boundary point. Equation
(1) − (5) will still be satisfied when ®𝐸 = ®𝐻 = 0, which is
unwanted. To avoid obtaining trivial solution, a loss function
related to the energy normalization is used∫

𝜀 | ®𝐸 |2
2

𝑑𝑉 +
∫

𝜇 | ®𝐻 |2
2

𝑑𝑉 = 1 (6)

One cavity is different with each other based on the geom-
etry of the cavity. In our case the difference is represented by
the normal vector ®𝑛 sampled on the boundary points. Thus,
PINN for resonant cavity cannot be made completely mesh
free [4], unlike other PINN implementations. The surface
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mesh is obtained using Gmsh scheme [13] with triangular
shape surface mesh, while the sampling for interior points
are done with uniform spacing. The normal vector is then
calculated using the cross product of two sides of the trian-
gular cell, and then the normal vector is positioned in the
middle of the triangle. The normal vector used to calculate
boundary condition loss function is shown in Fig. 1.

a. b.
Figure 1: a. Illustration of how normal vector is related to
triangular mesh. b. Sampled normal vectors for a cylindrical
shape surface.

The total loss function is a linear combination of individ-
ual loss functions related to the minimized equations, which
can be written as

𝐿 = 𝑤in𝐿in + 𝑤div𝐿div + 𝑤norm𝐿norm + 𝑤bc𝐿bc + 𝑤m𝐿m
(7)

with 𝑤𝑖’s are the weights and 𝐿𝑖’s are the losses. The sub-
script in, div, norm, bc, and m correspond to Helmholtz equa-
tion, divergence free relation, normalization requirement,
boundary condition, and mode forcing loss respectively. In
general, the weights is not set equal to each other. Here, the
optimized composition of loss weights are found through
trial and errors.

The mode forcing loss function is used to enforce the
model to learn a certain excitation mode. For instance, if
transverse magnetic (TM) mode is desired, 𝐻𝑧 = 0 can be
used. Likewise, if transverse electric (TE) mode is desired,
additional loss function 𝐸𝑧 can also be used. This will help
the model to converge more easily to the desired mode, es-
pecially when the mode is not the lowest frequency mode
for the given cavity.

The minimization of Helmholtz equation error requires
the eigenvalue 𝜆 = −𝜇𝜀𝜔2 to be known. In this paper,
the eigenvalue is calculated by choosing one of Helmholtz
equation of the field that we suspect is non-trivial, then
multiplying the equation with the said field, and integrat-
ing the equation with respect to volume. The scheme is
similar to the calculation method energy expectation value
for Schr¥odinger [14]. The equation can also be written in
discrete form as follows

𝜆 =

∫
𝜓𝑖∇2𝜓𝑖𝑑𝑉∫
𝜓2
𝑖
𝑑𝑉

=

∑
𝑗 𝜓𝑖 𝑗∇2𝜓𝑖 𝑗𝑑𝑉 𝑗∑

𝑗 𝜓
2
𝑖 𝑗
𝑑𝑉 𝑗

(8)

where the index 𝑗 indicates the node volume related to the
sampled interior points. For uniform sampling, the value of
𝑑𝑉 𝑗 will be the same for all sampled interior points, thus for
that case 𝑑𝑉 𝑗 can be dropped.

Training Procedure
The fully connected network proposed here consists of

five hidden layer with forty neurons in each hidden layer,
illustrated in Fig. 2. All of the hidden layers use sine as
the activation function. The training done for 25000 epochs
using a single batch for all cases. Adam optimizer is used to
minimize the loss function with the initial learning rate is
set to be 10−3 and then changed to 10−4 after 10000 epochs.

Figure 2: Fully connected network used in this paper.

A simple cylindrical cavity shown in Fig. 3 is used as
the test case. The height and the radius of the cylinder is
both equal to 10 (unitless). For that particular cavity, the
eigenvalue obtained using analytical calculation for TM010
and TE111 are 0.0578 and 0.1325. 1088 points are sampled at
the boundary following Gmsh algorithm, while 2652 interior
points are sampled in uniform manner. For simplicity, both
of permittivity and permeability of free space is set equal to
one.

a. b.
Figure 3: a. Model of cavity with a. Mesh view. b Geometry
view.

Two modes are considered here, the first one is TM010 and
the second one is TE111. As mentioned previously, to enforce
TM and TE case, additional mode forcing loss function can
be used. Here, in addition of setting 𝐻𝑧 = 0 and 𝐸𝑧 = 0 to
make it even easier for the network to learn the field pattern,
additional 𝐸𝑥 = 𝐸𝑦 = 0 and 𝐻𝑥 = 𝐸𝑦 = 0 is used for TM
and TE case respectively.

Adaptive weighting scheme is adopted in this paper, where
the loss function weights changes after a certain amount of
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epochs has passed. The scheme is used to make it easier for
certain characteristic of solution to occur first. For example,
in this case the most important loss function is the bound-
ary condition loss (because it distinguish one cavity with
another) so the loss weight for boundary condition should
be made high. However, setting it high from the beginning
might make it hard for the system to have a low normaliza-
tion error. In essence, the model often prioritize itself to
satisfy the boundary condition only, often resulting in trivial
solution. Thus, initially the boundary condition loss weight
is made very small so that the electric and magnetic field is
large enough. The Helmholtz loss weight is also made small
initially since the calculation will not be accurate as long as
the boundary is not fixed yet. The initial loss weights and the
latter changes are shown in Table 1 and Table 2 respectively

Table 1: Initial Loss Weights

No. Loss Type Weights
1 Helmholtz equation 20
2 Divergence free equation 10000
3 Normalization constraint 0.01
4 Boundary condition 10
5 Mode forcing 1000

Table 2: Modified Loss Weights

No. Loss Type Weights Epochs
1 Helmholtz equation 200 3000
2 Boundary condition 1000 6000

All of the procedure shown in this paper is carried us-
ing Research Center of Nuclear Physics’ workstation PC.
The workstation uses Intel core-i9 14900KF processor and
NVIDIA RTX 4070 Super with 12 GB of VRAM. The code
is written using pytorch, and is trained completely using the
GPU.

RESULTS
Training result as a function of epoch is presented in

Fig. 4a. The simulation took about 32.4 minutes and 33.11
minutes for TM010 and TE111 mode respectively.

Figure 4a shows that the total loss could be minimized
by the neural network model, and that the total loss almost
plateaued after 15000 iterations (slight fluctuation in the
graph is caused by the logarithmic scaling). From Fig. 4b
it is clear that the normalization loss is significantly larger
than other losses, which is the main motivation of lowering
the value of normalization loss weight. It is evident from
Fig 5a and 5b that it is harder for the network to minimize the
Helmholtz and boundary loss function of TE111 mode com-
pared to TM010. It is likely that it is easier for the network
to converge to the mode with lower eigenvalue.

There are two big bumps in the total loss, at epoch 600
and 3000, which is the point where the boundary condition

a. b.
Figure 4: a. Loss vs epoch for a. Total loss. b. Normalization
loss.

a. b.
Figure 5: a. Loss vs epoch for a. Helmholtz loss. b. Bound-
ary loss.

weight and Helmholtz equation weight is increased. The
bump implies that before the weight is increased, the network
simply ignore the significance of boundary condition and the
Helmholtz equation. After the boundary loss is prioritized by
the increase of weight, the network need to give compromise
to other losses, which will affect the loss value. It is proven
from the result that the emergence of non-trivial solution
can be avoided by using the adaptive scheme.

As can be seen from the normalization loss graph, it is
harder for the network in TE111 case to minimize normaliza-
tion loss after the boundary condition weight is increased,
compared to TM010. The normalization loss stayed high for
about 1000 epochs after the boundary weight is increased.
It is likely that the network tend to converge to the lowest
frequency mode first, which is the TM010 mode for this cav-
ity.

Figure 4a shows that the total loss function start to plateau
after 10000 epochs. The result is not that dissimilar with
other published physics informed neural network algorithm
that has been published [3, 5, 15]. An author has proposed
a scheme to accelerate the convergence by using gradient
enhanced loss function [16]. The procedure is not done here
because in doing so will increase the number of loss function
in a model with already a lot of loss functions.

The neural network was able to predict the general distri-
bution of the electromagnetic field (the analytical calculation
can be seen on [12]). The electromagnetic field distribution
at the surface of the cylindrical cavity for TM010 and TE111
are shown on Fig. 6a and 6b respectively. The high bound-
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a. b.
Figure 6: Surface electric field (red) and magnetic field
(blue) for a. TM010. b. TE111 mode.

ary condition loss enforce the electric field to be always
perpendicular to the surface while the magnetic field is al-
ways parallel to the surface. The radial distribution of axial
electric field 𝐸𝑧 also resembles zeroth order Bessel function
of the first kind. Such distribution is the result of Helmholtz
equation loss function. However, the loss weight cannot
be made too large, as it will make the network to priori-
tize the Helmholtz equation over the boundary condition,
resulting in an incorrect distribution (and in turn, incorrect
eigenvalue).

Figure 7: Surface electric field (red) and magnetic field
(blue) for TM010 mode with no zero divergence constraint.

The divergence loss weight was set very high from the
beginning to emphasize the importance the importance of
the constraint. Without it, the field will find a configuration
that still satisfy the boundary and Helmholtz equation con-
straint, but might be unphysical. Figure 7 shows when the
divergence constraint is ignored. The figure shows that the
magnetic field could behaves as if it is originated from a
source, which is obviously not the case.

Figure 8: Eigenvalue vs epoch for TM010 and TE111 mode.

Figure 8 shows the evolution of eigenvalue with respect
to epoch. At the early stage of training, the eigenvalue is
much smaller than the actual value. During this period, the
electric and magnetic field are both non-trivial, since the
normalization error is quite small. Therefore, the significant
discrepancy stems from the fact that boundary condtion is
not obeyed at the early stages. When the boundary condition
loss weight is made significant, suddenly the eigenvalue start
to gain value comparable to the actual eigenvalue.

The eigenvalue for TM010 and TE111 mode are 0.0584
and 0.141 respectively. The error for each computed eigen-
value with respect to the analytical value is 0.98% and 6.9%
respectively. It is likely that transverse electric case has a
larger error than transverse magnetic case because the net-
work converge more easily to the ground state instead one
of the state with higher frequency above.

For this simple cavity, the error is significantly larger than
conventional finite element methods. Some authors have
pointed out about the possibility of improving the PINNs by
modifying the network (at the very least reducing conver-
gence time), such as by using symmetrical or antisymmetric
network or by using Fourier features [17]. In this case how-
ever, it can be seen that the eigenvalue plateaued after about
6000 epochs, which means that the network already consider
the computed result as the best value. It would seem that
another method to compute the eigenvalue is more suited
to this problem. There has been proposal on the use of one
input weight at the network as the eigenvalue [15].

As mentioned earlier, the simulation took about half an
hour to finish. For simple cavity, this might seem to be too
lengthy, since commercial software on eigenmode simula-
tion only requires simulation on order of seconds for such
simple cavity (it might took a longer time if the mesh is
refined, but for simple cavity, the numerical accuracy will
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not increase significantly). The benefit of PINNs would
be when larger sampling size (corresponding to fine mesh)
is required, as the simulation duration will not scale expo-
nentially with respect to sample size. In addition, transfer
learning might also greatly reduce the required simulation
duration. Initial network can be trained using a simple cavity
as the base model. For a more complex cavity with larger
sampling size, the base model can be used for starting point
of the simulation. These assertions will require further tests.

CONCLUSION
A physics informed neural network model to solve RF

eigenmode problem on a resonant cavity have been pro-
posed and tested. The network could give a relatively good
prediction on the lowest transverse magnetic and transverse
electric mode. A further research on an improved network
and eigenvalue calculation scheme is necessary to reduce
training duration and improve accuracy. This scheme might
be useful for cavity optimization problem with the help of
transfer learning and its ability to handle large data samples.
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