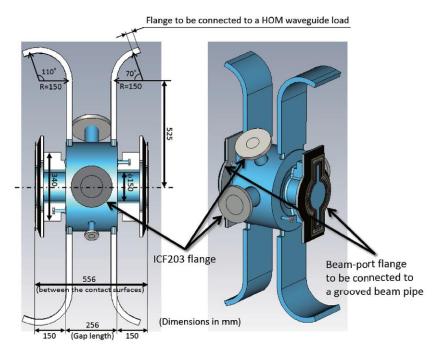

加速空洞ブレークダウン電流の観測実験 及びPICシミュレーションとの比較

山口孝明、阿部哲郎、小林鉄也 (KEK、加速器研究施設)

はじめに

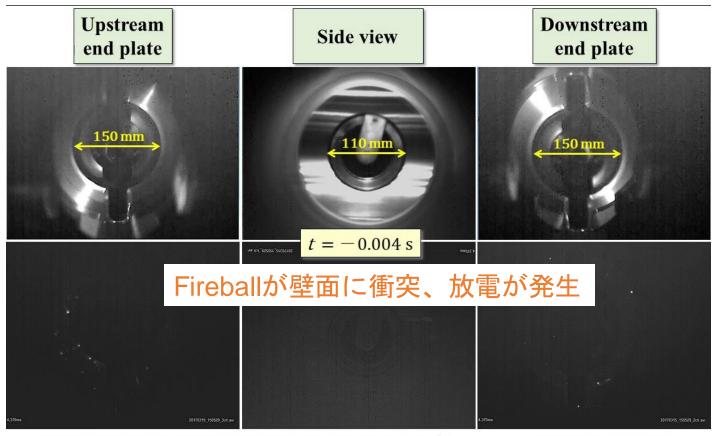

- 現代の加速構造(静電加速・高周波加速)における加速勾配の限界: 真空ブレークダウン現象
 - ✓物理現象として非常に複雑、領域横断的: 分子動力学、熱流体力学、プラズマ物理...
 - ▶統一的な現象の理解には至っていない
- SuperKEKB RFグループでは、ブレークダウン現象の直接観測実験を行っている
 - ✓大電力試験中の空洞内をTVカメラでモニタし、ブレークダウンの観測
 - ▶高温の火の玉 (fireball) がブレークダウンの引き金に
- 今回、Fireball起因ブレークダウンのより詳細な実験・シミュレーションを実施
 - ✓測定セットアップを変更 → 放電で生じる電子の電流(ブレークダウン電流)を測定
 - ✓CST Particle-in-cell (PIC) solverを用いたシミュレーションで実験の再現を試みる
- ・ 詳細測定の動機: SuperKEKB加速器での原因不明の突発的ビームロス
 - ✓ Fireballによる放電がビームコリメータで発生してビームロス?
 - ▶ 2024年5月以降のビームスタディで別の原因であることが判明*

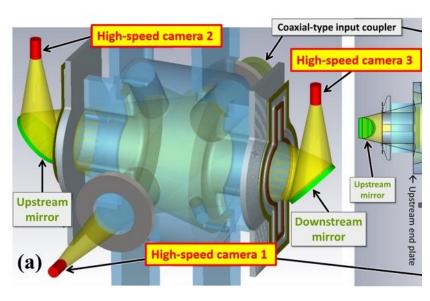
* H. Ikeda, FRP023

これまでのfireball起因ブレークダウンの観測

- SuperKEKB陽電子ダンピングリング用加速空洞を使ったブレークダウン観測実験
 - 常伝導
 - RF周波数: 508.9 MHz (CW)
 - RF電圧: 0.8 MV
 - 壁損失電力: 140 kW

(a) Conceptual diagram of the main body of the DR cavity (single cell). The blue region indicates the vacuum. The gap length of this cavity is $256\,\mathrm{mm}$.


SuperKEKB陽電子ダンピングリング用 508.9 MHz加速空洞



大電力テストスタンド

これまでのFireball起因breakdownの観測

• ハイスピードカメラでの観測

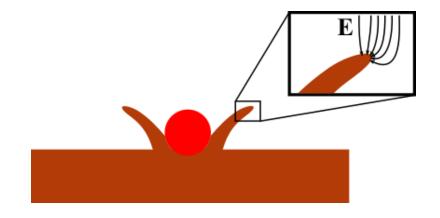
509 MHz cavity with a cavity gap voltage: 0.88 MV (= accelerating gradient: 3.4 MV/m)

Recorded by Tetsuo ABE (KEK)

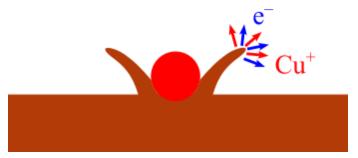
Breakdown直前の空洞内の映像* (RF電圧0.88 MVで運転中)

^{*} T. Abe, in Presentation of Workshop on Dust Charging and Beam-Dust Interation in Particle Accelerators, CERN, June 13, 2023. https://indico.cern.ch/event/1272104/contributions/5348243/

Fireballとは


今までの実験で分かったこと:

- 粒径: ~10–100 µm
- 温度: ~1000 K
- 構成物質: 銅よりも高融点な物質(C(graphite), Mo, Ta, W, ...)

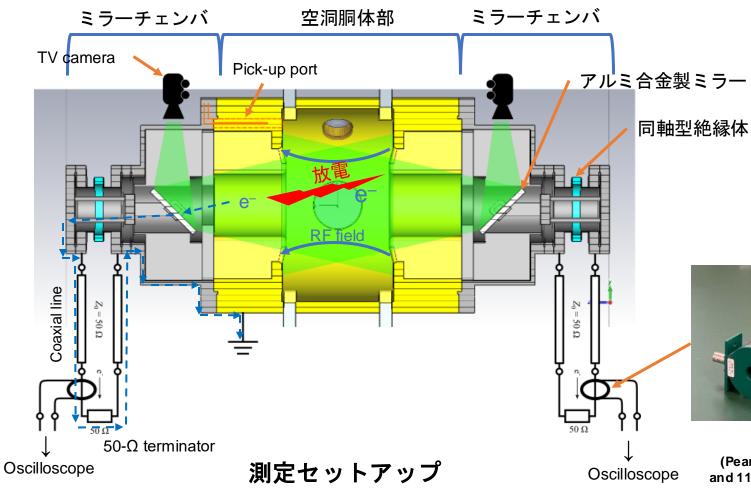

空洞の銅壁面(T~300 K)

- 銅がプラズマ化し始める温度~10⁴ K
- ➤ fireballの熱だけではプラズマ化には 至らない

- Fireball衝突時に局所的に電場が集中?
- ▶ 局所的発熱で銅がプラズマ化?

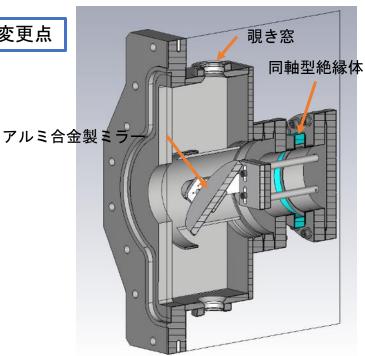
- 放電で生じる電荷量は?
- PICシミュレーションで 現象を再現できるか?

• 放電の発生


実験

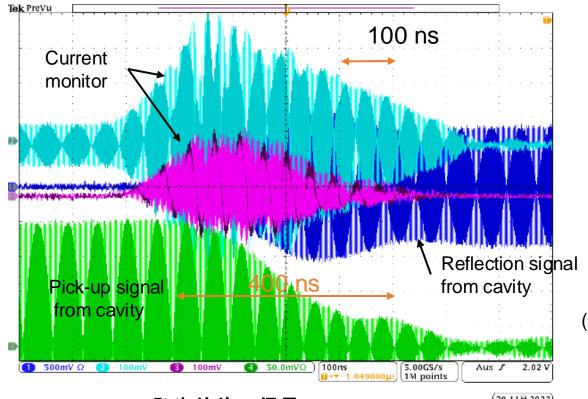
測定セットアップ

- ビームポートにアルミ合金製ミラーを設置
 - → 大電力試験中の空洞内をモニタ、放電箇所の特定
- ・ 同軸型の絶縁体を使って、ミラーを空洞側から絶縁


以前の測定セットアップからの変更点

→ 電流測定回路により、
ミラーまで来た電子を測定

電流測定器 (Pearson Electronics, Model 411 and 110, Bandwidth: 1 Hz – 20 MHz)

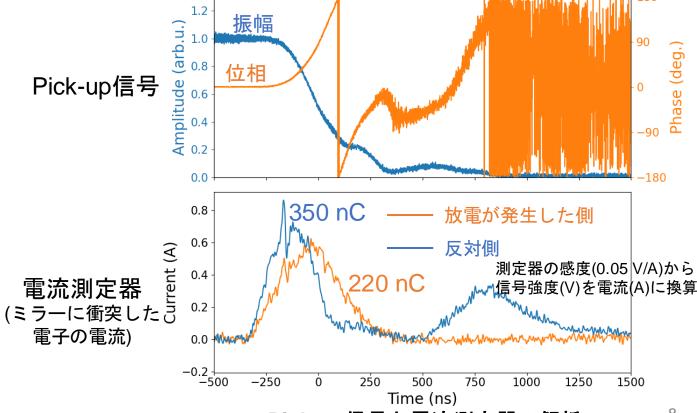

ミラーチェンバ

実験結果 (信号)

昨年10-12月にかけて大電力試験を実施、計18回のbreakdown事象の観測に成功

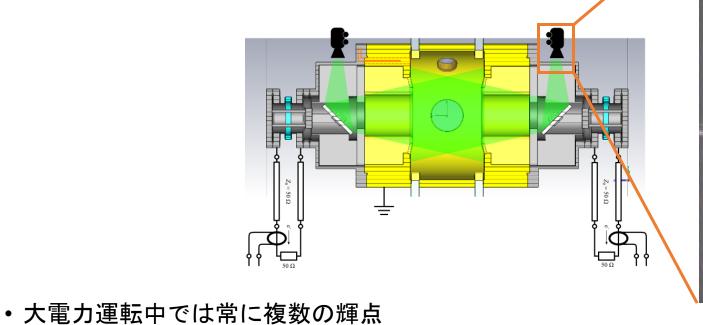
Breakdownが発生すると...

- 反射interlockまたは入力カップラーのarc interlockが働き、RF down
- ✓ Pick-up信号(=空洞からのRF信号)が空洞の時定数(= filling time ~8 µs)よりも10倍以上 速く減衰(放電現象がRFエネルギーを吸収)
- Pick-up信号の減衰と同期して電流測定器から大きな信号


Breakdown発生前後の信号(Breakdown #13) (Sampling rate: 5 GHz)

電流測定器

電子の電流)


ミラーに衝突した電子の電流を 測定することに成功

- ✓ Pick-up信号の振幅・位相を計算
- ✓ 電流測定器の信号からdigital LPF(fc=100 MHz)で高周波成分を除く

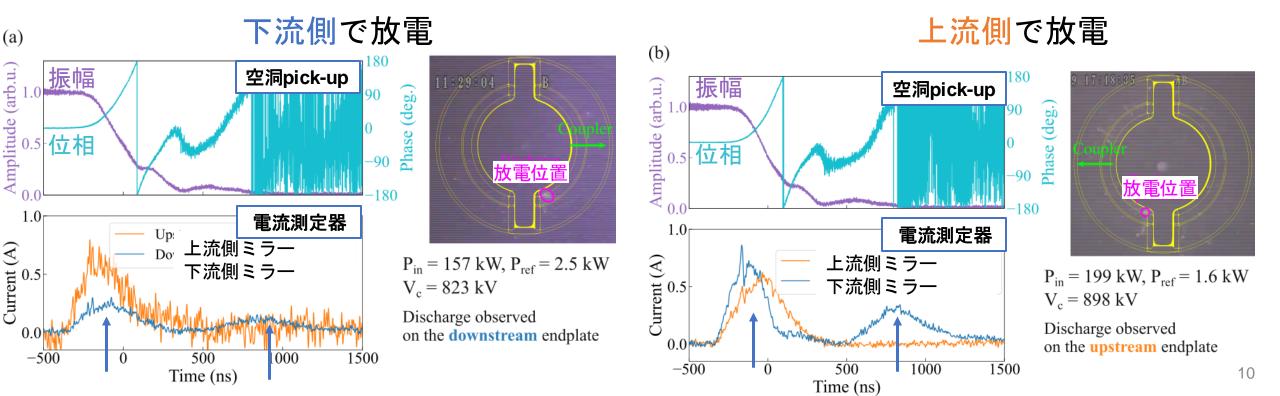
Pick-up信号と電流測定器の解析

実験結果(TVカメラ)

Breakdown前後のカメラ映像(Breakdown #13) (上流側を見るカメラ)

- RF down直前のフレームに大きな輝点=放電箇所
- 2023-11-29 17:18:35 B 2023-11-29 17:18:35 B 2023-11-29 17:18:35 B

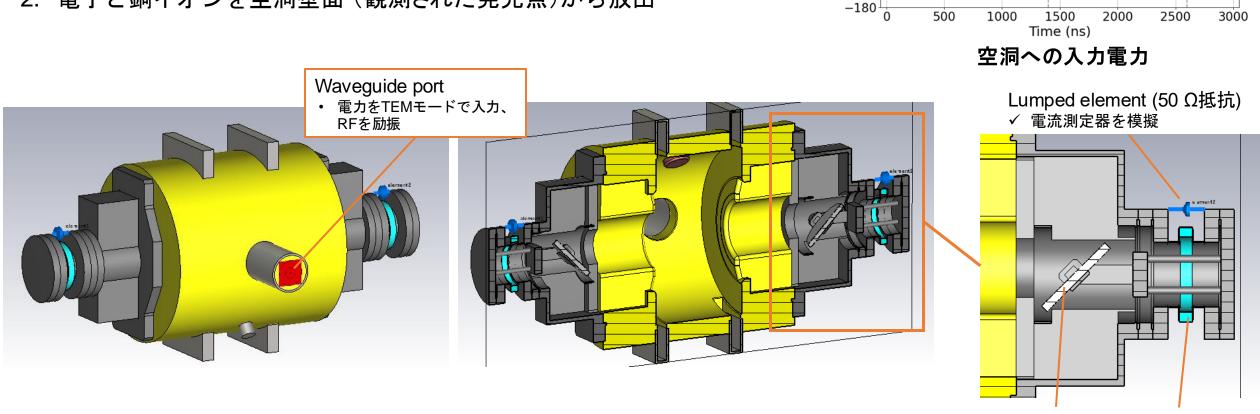
2023-11-29 17:18:35 AB 2023-11-29 17:18:35 AB 解点が発生 RF down後


30 frames/s

2023-11-29 17:18:25

他の測定例との比較

- 異なる端板(上流・下流)で放電が発生した例を比較
 - ✓ Pick-up信号の減衰、位相回転の様子は両者とも同様
 - ✓ どちら例でも下流側電流測定器の信号が2山に見える
 - □ その他の測定例も同様
 - □ 電流測定器を上流・下流で入れ替えても変わらない


ミラーまで到達する電子は全放出電子のうちごく一部 → シミュレーションで放出された電子の合計を推定

シミュレーション

Particle-in-cell simulation

- CST Particle Studio, PIC solverを使用して、観測された放電現象を再現
 →発生した全放電電流を推定
 - *シミュレーションではfireball自体は考慮せずに放電のみを考える
- 1. 入力カップラーから電力を入力、RF電圧(900 kV)を励振
- 2. 電子と銅イオンを空洞壁面 (観測された発光点)から放出

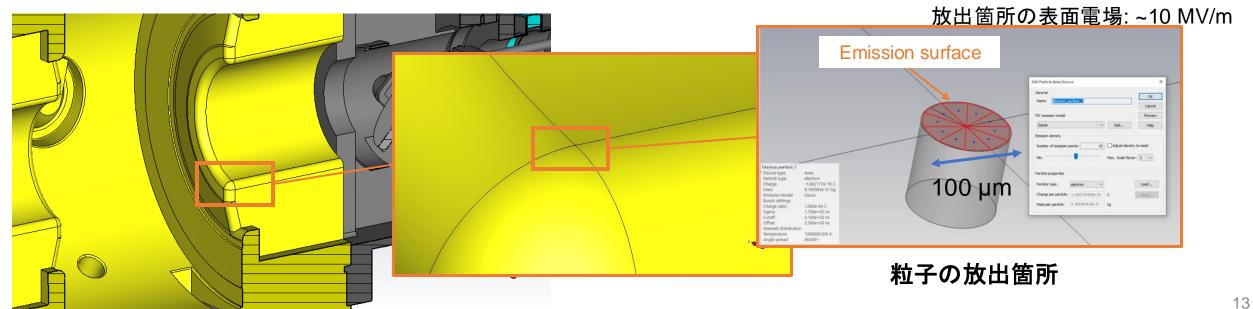
Simulation model

10⁷ 10⁷ 10⁶ 182

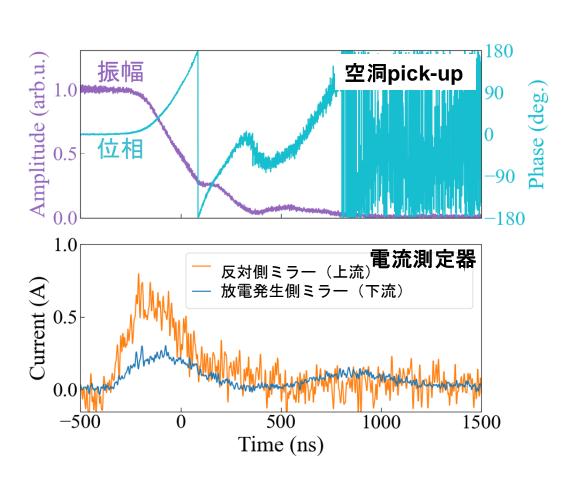
180

Phase (degree)

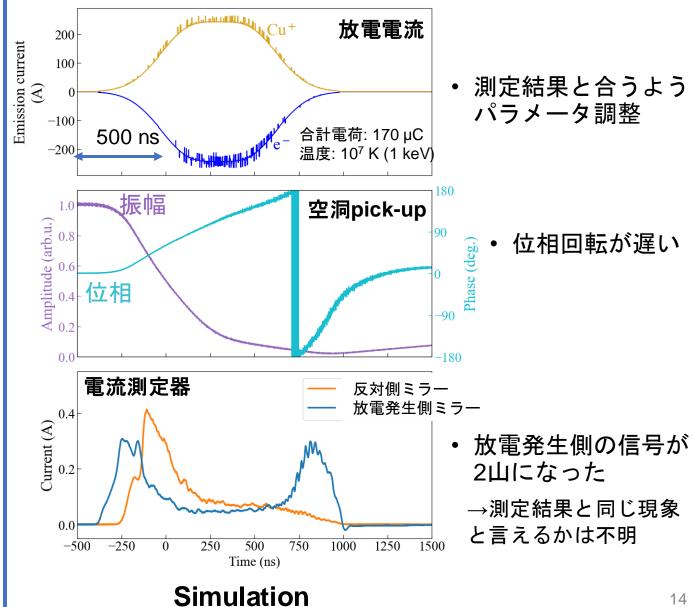
RFの励振


Power

Phase


放電

放出粒子の設定


- ・ e⁻, Cu⁺を等電荷、同時に放出
- Maxwell-Boltzmann速度分布で粒子の初期条件 を与える:
 - 温度: T_{initial} = 10⁵ 10⁷ K (~ 10 eV 1 keV)
 - 全電荷量: 0.1-1 mC

測定結果とシミュレーション結果の比較

空洞pick-upの振幅やピーク電流等は大まかには一致

Measurement

14

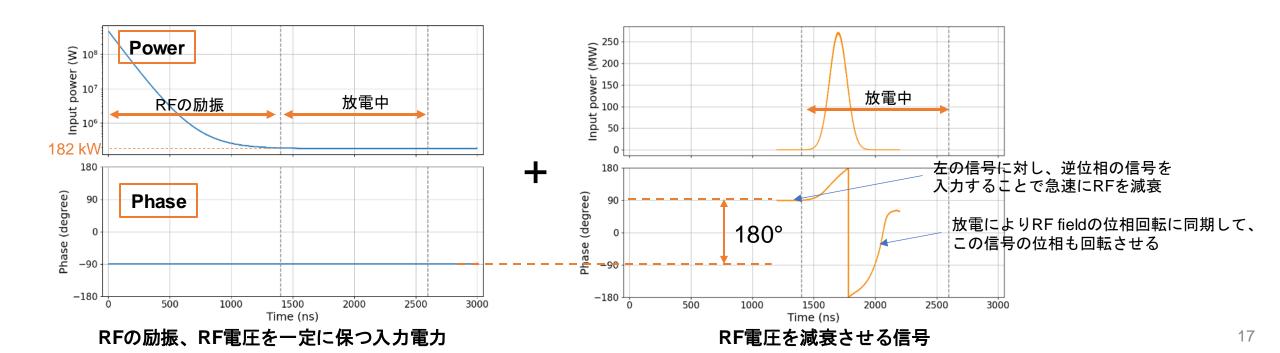
まとめ

- Fireball起因ブレークダウンで発生するブレークダウン電流の測定を実施
 - ✓合計18回のブレークダウン現象を観測、電流測定に成功
 - ✓ Pick-up信号の振幅・位相の変化の詳細なデータを取得
- CST PIC solverで実験結果の再現を試みた
 - ✓実験結果に近い波形(電流測定器、pick-up信号)を再現することに成功
 - → 実際に放出された電子は~100 µC (ピーク電流~100 A) か?
 - ✓電流測定器の信号が2山に見える現象については今後要検討

今後

実験

- テストスタンドのklystron電源(D01A)が故障等が原因で実験は中断
 - ✓ 復旧次第、実験を再開したい
 - ✓ 測定セットアップを改良:より帯域の広い電流測定器の導入、ハイパースペクトルカメラによるプラズマ初期温度の測定


<u>シミュレーション</u>

• 初期パラメータ・放出電流のさらなる調整で実験により近い波形を再現したい

補足資料

プラズマを作り出すエネルギー?

- ・ CST PIC Solverは、エネルギー保存則を考慮した計算が可能
 → 粒子の加減速に伴う電磁場エネルギーの変化を計算可能
- プラズマ化に使用されるエネルギーを、入力カップラーから引き抜くトリックを使う

