PASJ2020 WEPP59

cERL での縦方向バンチ構造測定のための小型偏向空洞の開発 DEVELOPMENT OF A COMPACT DEFLECTING CAVITY TO MEASURE THE LONGITUDINAL BUNCH STRUCTURE IN CERL

内藤 大地 *^{A)}、山本 尚人 ^{A)}、本田 洋介 ^{A)}、宮島 司 ^{A)}

Daichi Naito^{* A)}, Naoto Ymamoto^{A)}, Yosuke Honda^{A)}, Tsukasa Miyajima^{A)} ^{A)}High energy accelerator research organization

Abstract

Recently, the compact energy recovery linac has been generating infrared free-electron laser (infrared-FEL) using the process of self-amplified spontaneous emission. This process starts when an electron bunch is injected into undulators. Passing through the undulators, the infrared-FEL is generated by the stimulated emission from the electrons whose longitudinal density is periodically modulated inside the bunch. Therefore, performance of the infrared-FEL strongly depends on the longitudinal distribution of the electrons at the undulator exit. To improve the performance of the infrared-FEL, we plant to measure the longitudinal distribution by deflecting cavities. The deflecting cavity is required to be position resolution of 10 μm in order to resolve the structure inside the electron bunch. To achieve the requirement, we develop a c-band cavity. In this paper, we report the design of the prototype cavity and progress status of the cavity production.

1. はじめに

KEK compact energy recovery linac [1] では波長が 15-20 µm の自己増幅自然放射 (SASE) 型の赤外自由 電子レーザー (FEL) の生成を行っている。SASE 型赤 外 FEL の生成はアンジュレーターに電子ビームを入 射して行う。Figure 1 に SASE 型 FEL の生成概略図を 示す。電子は磁場中で放射光を出しながら蛇行する。 この時、電子は自分の後方を進む電子による放射光 と相互干渉しながら進む。すると電子ビーム中でエ ネルギー広がりが成長する。このエネルギー広がり により電子ビームの磁場中での軌道が変化して進行 方向の分布に疎密ができ (マイクロバンチ化)、誘導 放射が起きる。この誘導放射が赤外 FEL となる。

赤外 FEL の単色性や強度を最大化するには電子 ビーム中のマイクロバンチ化している領域を最大 化するとともに、マイクロバンチの密度低下やマイ クロバンチ間隔の不均一化を防がねばならない。こ れらの現象はアンジュレータ入射時の電子のエネル ギー分布やベータトロン振動、電子同士の空間電荷 効果の影響等により説明される [2]。従ってアンジュ レーター通過後のマイクロバンチ構造の変化を直 接測定しながらエネルギー広がりやビーム電流等の ビームパラメータを調整する事により、赤外 FELの 品質を向上する事が可能となる。そこでマイクロバ ンチ構造を測定するため、新しい c-band の偏向空洞 を開発した。本論文では最初に偏向空洞によるバン チ長測定の測定原理について述べる。次に偏向空洞 への要求性能と試作一号機の設計について述べる。 最後に試作一号機の製作状況について報告する。

2. 偏向空洞を用いたバンチ長測定の原理

偏向空洞を用いたバンチ長測定の概略を Fig. 2 に 示す。電子ビームが円筒空洞の中心を通過するタイ

Figure 1: Schematic of the FEL production.

ミングで RF の振幅がゼロになるように TM1n0 モード (n は整数)の RF を円筒内に励振する。すると電子ビームの前方と後方は RF 電磁場によって反対向きに蹴られ、電子ビーム全体で見ると 90 度回転する事になる。さらに空洞の後方にスクリーンを設置する事で、拡大投影された電子ビームの長手方向の分布を測定する事ができる。拡大された像の位置分解能を σ_{res} 、光速をc、素電荷をe、電子のエネルギーをE、空洞とスクリーン間の距離をL、TM1n0 モードの RF 周波数をw、シャントインピーダンスを R_{sh} 、入力電力をP、偏向空洞の位置でのビームの横方向の広がりを σ_{off} とおくと、

$$\sigma_{res} = \frac{cE\sigma_{off}}{eL} \frac{1}{w\sqrt{PR_{sh}}} \tag{1}$$

となる [3]。したがって $w\sqrt{PR_{sh}}$ を高くする事が位置分解能の向上につながる。

3. 偏向空洞に対する要求性能

Figure 3 に cERL の配置図を示す。偏向空洞は 2 台 のアンジュレーターの下流に置かれ、10m 後方のス クリーンを用いてバンチ長の測定を行う。位置分解 能の要求性能を見積もる際に用いたビームパラメー タを Table 1 に示す¹。マイクロバンチ長は 15 µm 程 度と短く、これを精度よく測定するには 5µm 程度の 高分解能が必要で、設置スペースや予算の関係から

¹現在のcERLの運転パラメータとは若干異なる

^{*} daichi.naito@kek.jp

^{- 418 -}

Figure 2: Schematic of the bunch-length measurement.

現実的では無いと予想された。そこで本研究ではバ ンチ長を精度良く測定し、バンチ内でマイクロバン チ化が起きたかどうかを判別できるよう、10μm 程 度の位置分解能を目指すことにした。

Figure 3: Schematic view of the cERL.

Table 1	:	Beam	Parameters	of	the	cERL
---------	---	------	------------	----	-----	------

Energy (E)	20 MeV
Beam size at the undulator exit	$200 \ \mu m$
Bunch length	$150 \ \mu m$
Micro-bunch length	$15 \ \mu m$
Fundamental RF frequency (w)	1.3 GHz
Beam hole radius	8 mm

次に $w\sqrt{R_{sh}}$ が最大となる偏向モードを見積もる ことにした。紙面の都合上詳細は省くが、3 次元電磁 場シュミレーターである CST [4] の eigen mode solver を用いて cERL で使う場合の最適解として、5.2 GHz の TM110 モードを採用した。使用する電磁場のモー ドと周波数より、偏向空洞への要求は入力電圧と R_{sh} の積が 1.3×10^{11} WΩ 以上となった。

4. 偏向空洞の設計

限られた予算の中で要求性能を達成するには RF 入力電源の費用を減らす事が一番効果的である。それには R_{sh}の低下を防ぐ事が望ましい。そこで導波 管を使って大電力を空洞へ投入するのではなく、開 口部の小さい N 端子を使って電力を供給することに した。この場合は放電の観点から空洞に 1 kW 程度 しか供給できないと予想されたので、1 m の空間に 同じ空洞を独立に 12 台並べる事にした。この章では まず試作空洞の大まかなデザインと性能について説 明した後、各要素の設計について詳しく述べる。 Figure 4 に我々が考案した試作空洞の概略図を示 す。空洞は RF 電力を入力するループアンテナ、共振 周波数をモニターするためのロッドアンテナ、共振 周波数を調整するためのチューナー、TM110 モード の x 偏向と y 偏向を分離するためのデカップラーが 接続されている。各要素の形状は CST を用いて最適 化を行なった。最適化後に CST の eigen mode solver で計算した、試作空洞のパラメータを Table 2 に示 す。表に示したとおり試作空洞単体では 120 μ m の 位置分解能が達成でき、この空洞を 12 台並べる事で 10 μ m の位置分解能が達成できると見積もられた。

Figure 4: Schematic view of the prototype cavity.

Table 2:	Characteristics	of the	Prototype	Cavity
				2

Resonance frequency	5.2 GHz
Unloaded Q	14800
Coupling β	1
Shunt impedance	$0.98 \ \mathrm{M}\Omega$
Kick voltage at 1 kW input	3.1 kV
Position resolution at 1 kW input	$120 \ \mu m$

4.1 空洞形状の設計

外面形状の最適化には CST の eigen mode solver を 用いた。検討した外面形状の例を Fig. 5 に示す。こ こでは便宜上、ピルボックス型の空洞をタイプA、 ピルボックス型空洞の外周部を円弧にした空洞をタ イプB、空洞の体積と表面積の比が最大になるよう に最適化した形状をタイプCとする。この3つに対 して CST の eigen mode solver を使って TM110 の R_{sh} を計算し、比較を行なった。Figure 6 に比較結果を 示す。タイプAに比べてタイプCでは R_{sh}が 20% 向上しているのがわかる。しかし Eq. (1) から位置分 解能は $\sqrt{R_{sh}}$ に反比例するので、位置分解能の改善 は1割強しかない。加えて試作空洞は KEK 内で製 作する事、KEK 内製では5GHzの空洞の製作実績が 無い事から、単純な A タイプを採用する事にした。 同様の理由から、空洞にノーズコーンをつけて R_{sh} を改善させる案も見送り、単純なピルボックス型の 形状を採用することにした。また空洞の半径は CST

PASJ2020 WEPP59

の eigen mode を使って計算したのちに他の要素の設 計を行い、最後に Fig. 4 のように全ての要素を組み 込んだモデルに対して CST の frequency domain solver による最適化を行なった。最終的な周波数の空洞半 径依存性は 0.1455 MHz/µm となった。

Figure 5: Schematic view of the prototype cavities.

Figure 6: Difference of the shunt impedance.

4.2 入力カプラーの設計

次に RF 電力入力部の設計について説明する。ま ず N 端子からロッドアンテナもしくはループアンテ ナを介して電力供給する事を検討した。ロッドアン テナの場合は空洞の端面に穴を開けて電場と結合さ せる。しかしこの方法ではロッドアンテナとビーム パイプを取り付けるポート同士の干渉により、半径 30 mm よりも外側にしかロッドアンテナを挿入でき ず、TM110 モードを歪ませずに良い RF 結合度を得 る事が不可能だと分かった。一方、ループアンテナ は空洞の外周部に穴を開けてループアンテナと磁場 を結合させる。TM110 モードは空洞外周部で磁場が 強くなるので、ループアンテナでの結合が最適であ る。しかし 5.2 GHz 用の N 端子は存在しなかったた め、京セラ株式会社 [5] と共同開発する事にした。

コネクタの設計には CST の Frequency domain solver を用いた。Figure 7 に開発した N 端子型ループ アンテナの概略図を示す。まずループアンテナ部の 設計、次に真空窓の設計について説明する。製作上 の制約からループ部分の径が 1 mm と決まり、この 条件の下で端子の先端が空洞外周表面と一致してい る時に、RF 結合度である β が 1 になるようにループ 部の形状を設計した。Figure 8 にこのループアンテナ を空洞に取り付け、回転させていった時の RF 結合 度 β の変化を示す。黒点が CST での計算結果、赤線 が cos² θ で fitting した結果であり、 β の回転依存性 が理論的予想と良く一致しているのがわかる。結合 度は製作した空洞の Q 値が CST の計算値と違った 場合を考慮して少し高めに設計した。そして回転角 をβが1になるよう調整した上で空洞に溶接する設 計とした。

Figure 7: Schematic view of the loop antenna.

Figure 8: Relation between the coupling beta and rotation angle.

次に真空窓部分の設計について説明する。まず 京 セラ株式会社にベースとなる構造を提案していただ き、それをもとに各部の形状を CST を用いて最適化 した。このため本論では真空窓部分の詳細な形状に ついては省く。最適化後の共振周波数と電圧定在波 比の関係を Fig. 9 に示す。電圧定在波比は反射係数 を表す指標で、1 に近いほど RF を無反射に近い状態 で伝送できる。Figure 9 より 5.2 GHz の電圧定在波比 を 1.1 と十分小さくする事に成功した。

Figure 9: Relation between the VSWR and resonance frequency.

4.3 モニター端子位置の最適化

モニター端子には 2.6 GHz 用に設計された SMA 型 ロッドアンテナを採用した。入力電力が 1 kW の時 に透過電力が 100 mW になるよう、CST の frequency domain を用いて、空洞端板上の位置とロッドアンテ ナの長さを決定した。

4.4 周波数チューナーの設計

周波数チューナーに関しては KEK 工作センター で製作実績のある、直径3mmのハンマータイプの チューナーで直径 15 mm、厚さ 2 mm の領域を押し 引きする構造を採用した。そしてチューナーの位置 と個数の最適化を行なった。計算には CST の eigen mode solver を用い、チューナーは直径 12 mm の円 筒型の領域が一様に変形すると近似して行なった。 チューナー2個の場合はFig.4の上二つ、水平方向か ら見て 45 度と 135 度に設置した時が一番大きく周波 数を変化できた。チューナー3個の場合はさらに-90 度の位置にもチューナーを配置する事でより大きな 周波数変化を達成できる事が分かった。Figure 10 に 位置最適化後に全てのチューナーを同時に x 軸に示 された量だけ押し引きした時の、TM110の周波数変 化を示す。2個の場合は1mm チューナーを動かす と 5 MHz、3 個の場合は 10 MHz 変化できるという 事が分かった。一方で実際のチューナーの稼働範囲 は±0.2 mm なので、2 個の場合は±1 MHz、3 個の場 合は ±2 MHz 変化させられるという結果になった。 そこで空洞製作時の周波数変化に十分対応できるよ う、3つのチューナーを採用する事とした。

Figure 10: Frequency dependence on the tuner positions.

4.5 モードデカップラーの設計

TM110 モードは電子ビームの進行に対して磁場が 鉛直方向に励磁される y 偏向と水平方向に励磁され る x 偏向がある。バンチ長測定には y 偏向モードを 用いるが、ここに x 偏向が混じると測定精度が悪く なってしまう。そこで、x 偏向と y 偏向を完全に分 離するため、Fig. 4 に示したように空洞の側面に円 弧を取り付けた。TM110 の y 偏向はこの部分で磁場 が最低となるため全く影響を受けない。一方で x 偏 向はこの部分で磁場が最大となるので、円弧がある と大きく磁場分布が歪み共振周波数が変化する。横 軸をデカップラーの半径、縦軸に x 偏向と y 偏向の 共振周波数の差をとった図を Fig. 11 に示す。この図 から x 偏向と y 偏向の差が 10 MHz となるようにデ カップラーの半径を 4 mm に決定した。

デカップラーにはもう一つ重要な役割がある。それはチューナーの押し込み量が非対称になった時、 TM110の偏向面が傾くのを防ぐ事である。そこで3つのチューナーのうち、一つだけを0.2 mm 押し込んだ時の空洞中心での磁場分布を評価した。Figure 12

Figure 11: Frequency difference between x-deflecting mod and y-deflecting mod.

に横軸に水平方向の位置を、縦軸に空洞中心の磁場 と各点での磁場の比をとった結果を示す。黒線のデ カップラーが無い場合と比べて赤のデカップラーあ りの場合の方が磁場の変形が少ない事、変形量が小 さく問題ない事が確認できた。

Figure 12: Distortion of the magnetic field.

4.6 空洞の製作

上述の計算結果をもとに KEK 機械工作センター に依頼して設計した試作空洞の製作図面を Fig. 13 に 示す。空洞本体の半径は TM110 の周波数が 5.2 GHz から 10 MHz 程度大きくなるように、設計値よりも 70 µm 程度大きくしている。これはあくまで CST の 計算は概算値と考え、実測に基づいて空洞の半径を 決定するためである。空洞本体は 3 パーツに別れて おり、ろう付けで接合する構造とした。入力カプラー とモニター端子は専用の台座を空洞にろう付けした のち、それぞれの端子を台座に溶接する構造とした。 ビームパイプ、チューナーヘッドは空洞にろう付け される構造とした。令和元年には空洞本体の金属加 工、入力カプラーとモニター端子の製造を行なった。

5. 試作空洞の製作状況

令和2年度は空洞の周波数を5.2 GHz にするため、 3度に分けて空洞内部の切削を行なった。試作機の 写真をFig.14に示す。図のように3パーツを重ね たのちに専用のジグで押さえつけ、空気中で周波数 の測定を行なった。測定では入力カップラー、モニ ター端子をネットワークアナライザーに繋ぎ、空洞 側は手で押さえつけて固定した。この時、入力カッ プラーの回転角は RF 結合度が最大となる位置で固 定した。そして透過法を用いて各端子の外部Q値や PASJ2020 WEPP59

Figure 13: Drawing of the prototype cavity.

周波数を測定した。

Figure 14: Photo of the prototype cavity.

Table 3 に調整削りを行う前の実測値と CST での計 算結果の比較を示す。無負荷 Q 値以外はシミュレー ションと実測値がよく一致しており、設計通りの性 能が達成できている事が確認できた。無負荷 Q 値の 違いはまだろう付けされておらず、電気的接触が弱 い事が原因だと考えている。

 Table 3: Comparison of the Cavity Parameters between the

 CST and the Measurement

Parameters	CST	Measurement
Frequency (GHz)	5.2105	5.2097
Unloaded Q	14125	11175
External Q (input coupler)	9378	9046
External Q (monitor)	24340	23578

次に空洞半径の削り量とそれによる周波数の変化 (Δf)をTable 4 に示す。削り幅に対して CST から予 想される周波数変化と測定結果は概ね一致し、想定 通りに空洞半径を調整する事ができた。その後モニ ター端子のロッドアンテナの長さも調整し、最終的 な周波数は 23.2°C で 5.19905 GHz となった。この周 波数はろう付け後に真空、35℃の環境で使う場合に 5.2 GHz になるように決定した。現在は完成した空 洞のろう付けを行なっている。

Table 4: Comparison of the Frequency Change between theCST and the Measurement

Cut of radius	Δf (CST)	Δf (Measured)
$32^{+2}_{-2.5}~\mu{\rm m}$	$-4.66^{+0.29}_{-0.36}~\mathrm{MHz}$	-5.1 MHz
$30^{+0.5}_{-0.5}~\mu{ m m}$	$-4.37^{+0.07}_{-0.07}$ MHz	-4.2 MHz
$9^{+0.5}_{-0.5}~\mu{ m m}$	-1.17 ^{+0.07} _{-0.07} MHz	-1.15 MHz

6. まとめと今後

cERL での FEL 高度化のため、バンチ構造を測定す るための偏向空洞を開発した。偏向空洞はバンチ長 150 µm、マイクロバンチ長 15 µm に対して 10 µm の 位置分解を目指した。そのために 5.2 GHz の TM110 空洞を 1 m の領域に 12 台並べる事にした。空洞形状 の最適化や入力カップラーの設計を経て、試作空洞 1 台を製造した。ロウ付け前の空洞の性能はシミュ レーションでの予測値とよく一致しており、設計通 りの性能が達成できている事が確認できた。今後は 空洞のろう付け、周波数の最終確認、ビーズ法によ る磁場測定を行う。

次にバンチ長実測のための準備状況について述べ る。要求性能の見積もりではスクリーンまでの光学 系や wake field の影響によるビームの広がりを無視 した。そこでこれらがバンチ長測定に及ぼす影響の 評価が必要である。特に現在は RF 入力用の AMP 調 達の資金的目処が立っておらず、空洞と AMP の数と それに応じて達成できる位置分解能を詳細に見積も る必要がある。これによりまずは必要最低限の AMP 購入の資金調達を目指す。

謝辞

この研究は日米科学技術協力事業により助成を受けたので、ここに謝辞を述べる。試作空洞の機械設計、ならびに組み立てとロウ付けは KEK 機械工学センターの高富氏に行なっていただいたので、ここに謝辞を述べる。

参考文献

- M. Akemoto *et al.*, "Construction and commissioning of the compact energy-recovery linac at KEK", Nuclear Instruments and Methods A, **877**, 2018, pp. 197-219.
- [2] E.L. Saldin, E.A. Schneidmiller and M.V. Yurkov, "The physics of free electron lasers. An introduction", Physics Reports, 266, 4, 1955, pp. 187-327.
- [3] D. Alesini, "Rf Deflector Based Sub-Ps Beam Diagnostics:. Application to Fel and Advanced Accelerators", International Journal of Modern Physics A. 22, 2007.
- [4] https://www.3ds.com
- [5] https://www.kyocera.co.jp