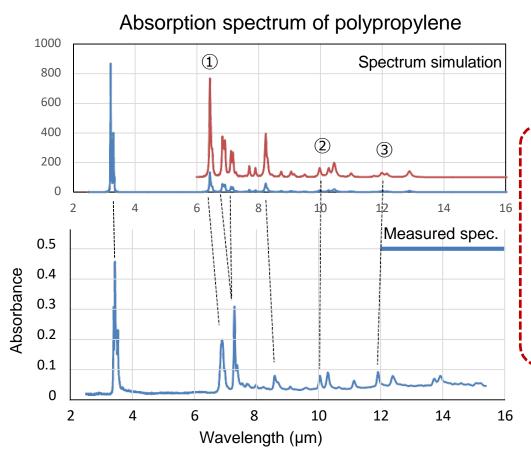


cERLを用いた中赤外自由電子レーザーの開発と その光発生実験

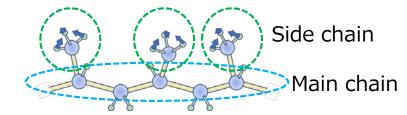
加藤龍好,阪井寛志,土屋公央,谷本育律,本田洋介,宮島司,島田美帆,中村典雄,帯名崇,高井良太,原田健太郎,高木宏之,満田史織,東直,山本将博,福田将史,田中オリガ,野上隆史,内山隆司,江口柊,塩屋達郎,下ヶ橋秀典,多田野幹人,上田明,長橋進也,濁川和幸,三浦孝子,Qiu Feng,荒川大,梅森健成,許斐太郎,加古永治,中西功太,本間輝也,小島裕二,河田洋(KEK)

羽島良一,川瀬啓悟(QST)

坂本 文人(秋田高専)

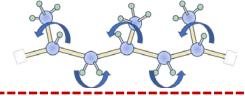

Nora Peak Norvell (SLAC)

本プロジェクトの背景(1)


Organic materials (Resin, Engineering plastic): light-weight, low-cost, high-functional Recently, the use of organic materials has been increasing.

Processing methods: Machining, Molding, Laser processing (CO₂, Fiber)

These organic materials have vibration absorption in the mid-infrared region

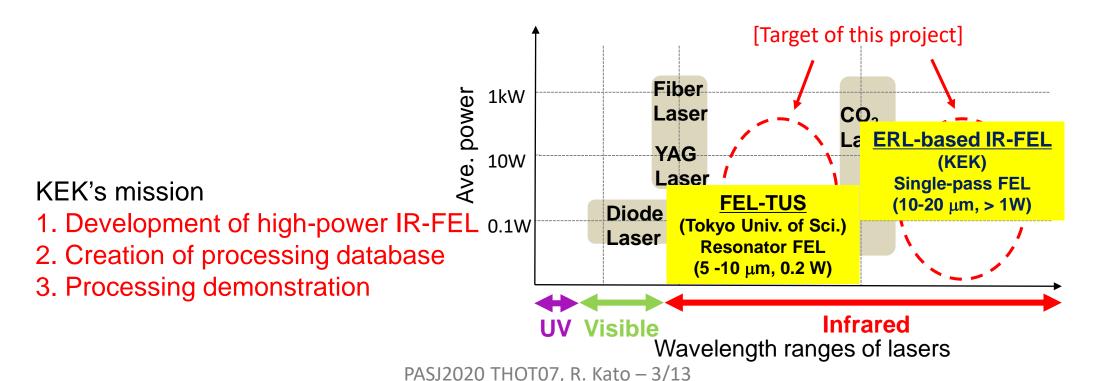


Peak(1): δ declination of side chain methyl group

Peak②: Stretch vibration of main chain C-C bond

Considering the process of cutting the resin, the absorption wavelength of ② and ③ seem to be more suitable than ①,

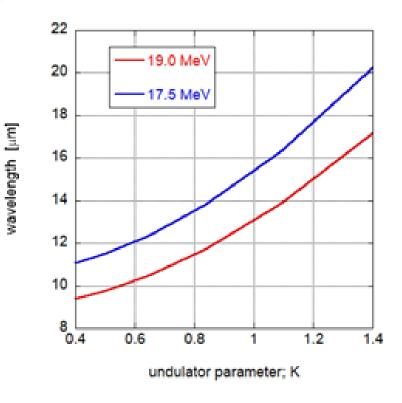
However, there is no database of easy-to-process wavelengths and required laser power.


本プロジェクトの背景(2)

Main high-power laser in MIR range is CO₂ laser only

→ Insufficient understanding of basic phenomena required for processing

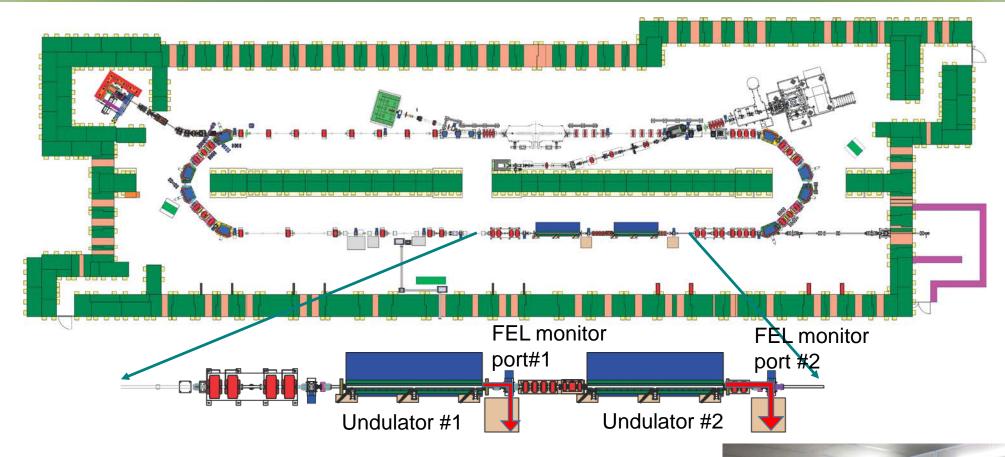
A tunable high-power laser is required to create a database for processing!


Project theme founded by NEDO (Ministry of Economy, Trade and Industry) "Development of high-power mid-infrared lasers for high-efficiency laser processing utilizing photo-absorption based on molecular vibrational transitions."

cERLを用いたMIR-FEL

Beam Energy	17.5 - 19.0 MeV			
Injector Energy	3.0 - 4.0 MeV			
E-Gun Energy	500 keV			
Bunch repetition	1.3 GHz → 81.25 MHz			
Average current	1 mA (\rightarrow 5 mA)			
Operation mode	CW or Burst			

Beam dump


Dump line

Main linac

FEL wavelength

PASJ2020 THOT07, R. Kato - 4/13

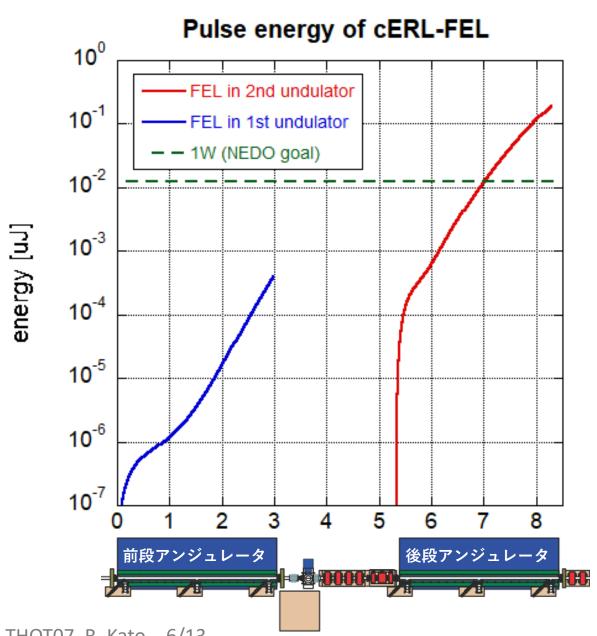
MIR-FELのレイアウト

Beam parameter

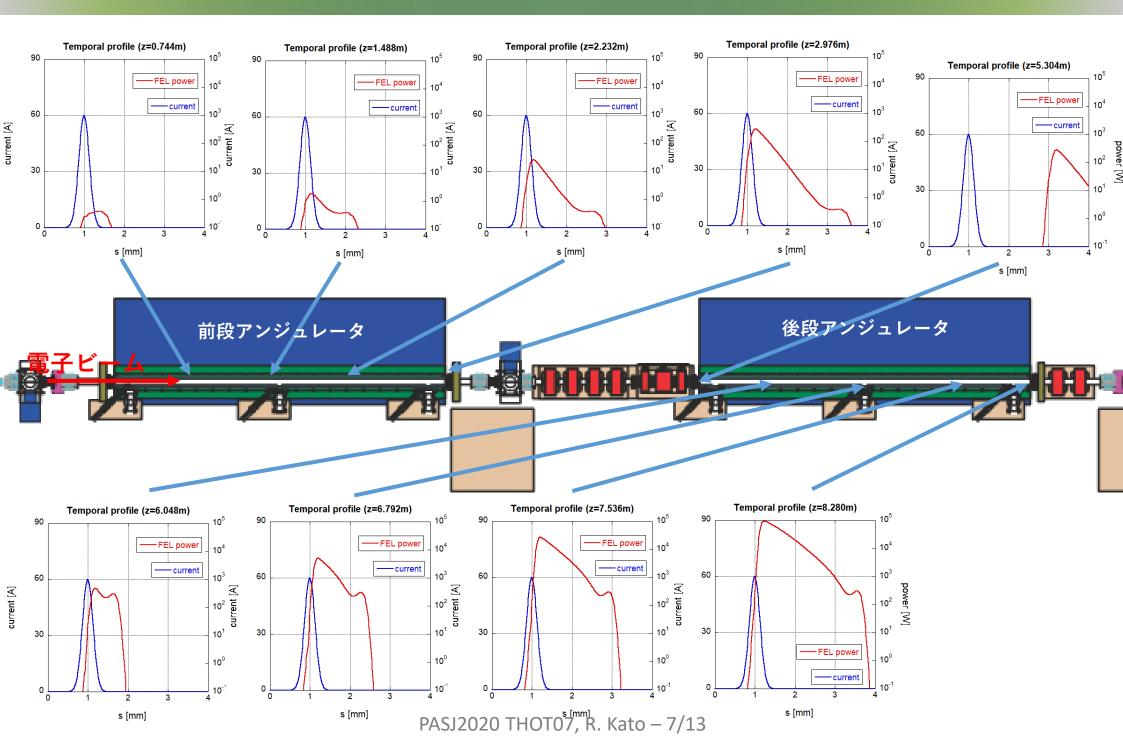
- Energy: 17.5 19.0 MeV
- Bunch charge : 60 pC
- Repetition: 81.25 MHz
- Bunch length: 0.5 2 ps (FWHM)
- Energy spread: 0.1%
- Norm. emittance : 3π mm mrad

Undulator parameter

- Type: APU (Planar)
- Gap: 10 mm (Fixed)
- K: 1.42
- Period λ_u : 24 mm
- Total length: 3 m
- No. of Undulator: 2

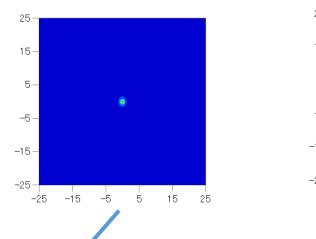


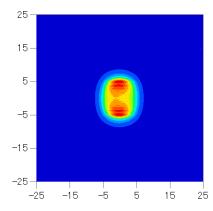
建設全体[THPP65] 電子銃レーザー改造[THPP64] ビーム診断改造[FRPP13] シケイン[WEPP60] アンジュレータ[FRPP59] 光計測系[FRPP5] を参照


cERL-FELの特徴とFEL光の成長

特徴

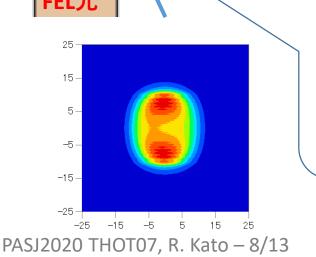
- Short Pulse FEL: L_{bunch}<L_{slip} (SASE-FELではない)
- 大きなSlippageにより、光は電子 バンチを追い越していく
- 電子バンチに形成されるマイクロバンチと光の相互作用により、 光パルスの後半が成長
- アンジュレータ間では、前段アンジュレータからの光が電子バンチから切り離される
- 後段アンジュレータでは、電子 バンチに形成されたマイクロバ ンチから次の光が成長
- 理想的な電子ビーム性能が実現されれば、平均出力は約10W程度となる




FEL光の時間プロファイルの変化

FEL光の空間プロファイルの変化

アンジュレータ内では、光 ガイディング効果により、 小さな空間サイズを保つ

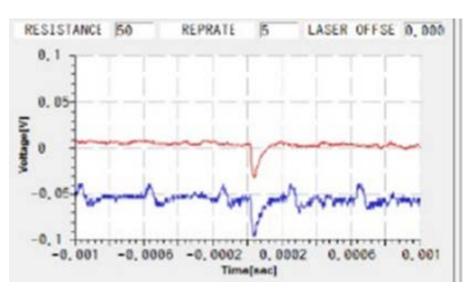


後段アンジュレータ

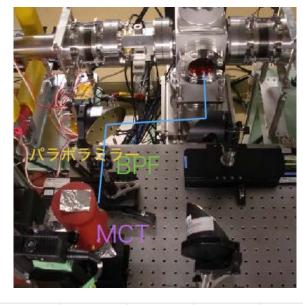
アンジュレータからでると、 光ガイディング効果がなくなり、回折効果により広がり始める

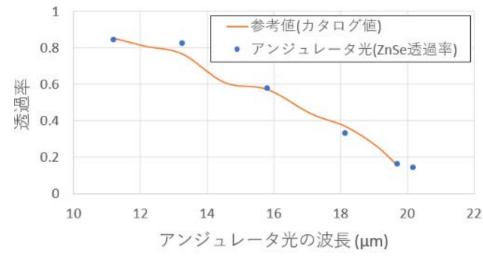
アンジュレータ内では垂直方 向のビームサイズが小さいた め、垂直方向の発散角が大き い

穴あき横撥ねミラーにより 広がった光を取り出す


ビーム実験(2020年3月)

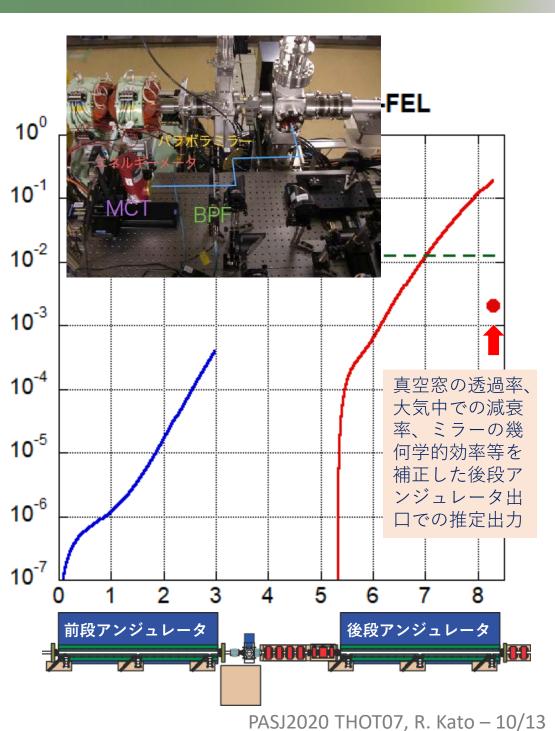
アンジュレータからの光発生と波長可変性の確認


3月にアンジュレータ1台でのFEL発生試験


加速された電子ビームをアンジュレータ1台目 を通し、増幅された赤外光をHgCdTe検出器 (MCT)で検出

発生した光が11μm~20μmで波長可変の準単色 光であること、水平偏光光であること確認

アンジュレータから出た光をMCTを用 いて検出された信号(下:生信号、 上:平均化した信号)


ZnSeの透過率から評価したアンジュ レータから得られた光の波長可変性。

ビーム実験(2020年6月)

FELシステム全体の動作確認と出力の評価

Parameters of cERL-FEL					
	Target	Present			
Beam energy	17.5 MeV	17.6 MeV			
Beam current (ave.)	5 mA	Burst mode			
Bunch charge	60 pC	60 pC			
Bunch length (FWHM)	0.5-2 ps	3-5 ps			
Normalized emittances	~3 π mm mrad	3-10 π mm mrad			
Energy spread	0.1%	~0.3 %			
Repetition rate	81.25 MHz	81.25 MHz			
Undulator type	Planar	Planar			
Length (period x number)	3 m (24mm x 124)	3 m (24mm x 124)			
Number of units	2	2			
FEL wavelength	15-20 μm	11-20 μm			
Output power (ave.)	1 W	several-ten mW(*)			

(*) 光学定盤上でのエネルギーメータによる出力測定値 今後のFEL出力改善については、[FRPP07][FRPP60]を参照

まとめ

KEKはNEDOプロジェクト「高輝度・高効率次世代レーザー技術開発」に採択され、令和2年度中にcERL南直線部にアンジュレータを設置、中赤外FELによる光の発生とエネルギー回収による平均高出力化を目指す。また、東京理科大FELとともに5~20 μ mの波長範囲をカバーする光源を提供することで、産総研と共同で樹脂加工に必要なデータベースの構築を行う。

3月のFEL発生試験では、増幅された赤外光をHgCdTe検出器(MCT)で検出。発生した光が $11\mu m \sim 20\mu m$ で波長可変の準単色光であること、水平偏光光であること確認した。 $4 \sim 5$ 月に 2 台目のアンジューレータを設置し、 6 月にビーム運転を実施するところまでこぎつけた。アンジュレータ 2 台目の出力として検出器位置で数10mW超の増幅光を確認。12月・2月に予定されているビーム実験でFEL出力増加と多種類のサンプル照射実験を目指す。

謝辞

本発表は、NEDOプロジェクト「高輝度・高効率次世代レーザー技術開発」の成果に基づいています。本研究の一部は科研費(18H03473)のサポートを受けております。 電子バンチ計測に際し、ストリークカメラをお貸しただいた東北大学の濱先生、柏木先生に深く感謝いたします。

本年会におけるcERL関連の発表

cERL関連

- 1. THOO02 森川 祐, 他「cERLにおける電子線を用いた医療用RI製造試験」
- 2. THOT07 加藤 龍好, 他「cERLを用いた中赤外自由電子レーザーの開発とその光発生実験」
- 3. WEPP06 坂本 文人, 他「光の空間分布に関する境界条件を考慮した

自由電子レーザーのシミュレーション」(発表取下げ)

- 4. WEPP59 内藤 大地, 他「cERLでの縦方向バンチ構造測定のための小型偏向空洞の開発」
- 5. WEPP60 中村 典雄, 他「コンパクトERLの赤外FEL用シケイン電磁石の性能と運転」
- 6. WEPP63 本田 洋介, 他「cERLにおけるテラヘルツ光源の開発」
- 7. WEPP64 島田 美帆, 他「コンパクトERLアンジュレータのビーム調整」
- 8. THPP12 阪井 寛志, 他「cERL赤外自由電子レーザーを用いたサンプル照射試験」
- 9. THPP64 本田 洋介, 他「cERL赤外自由電子レーザー用の電子銃レーザーシステム」
- 10. THPP65 東 直, 他「cERL-FELの建設」
- 11. FRPP07 本田 洋介, 他「cERL赤外自由電子レーザーにおける再生増幅FELの検討」
- 12. FRPP13 高井 良太, 他「コンパクトERLにおける赤外FEL設置に伴うビーム診断系の改造」
- 13. FRPP58 本田 洋介, 他「cERL赤外自由電子レーザーにおける赤外出力光の診断」
- 14. FRPP59 土屋 公央, 他「cERL自由電子レーザー用アンジュレータの磁場調整」
- 15. FRPP60 中村 典雄, 他「コンパクトERLの高出力赤外FEL運転に向けた

運動量アクセプタンス改善の検討」

16. FRSP01 加藤 龍好「KEKコンパクトERLの現状」

超伝導加速器利用推進チーム(2019-2020)

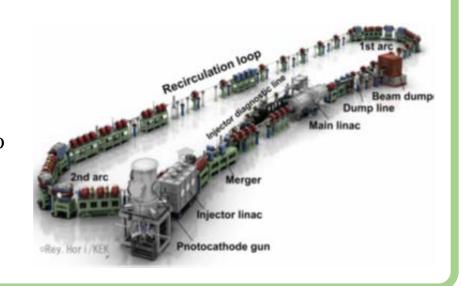
High Energy Accelerator Research Organization (KEK)

- M. Adachi, D. Arakawa, S. Eguchi, M. Fukuda, T. Furuya, K. Haga, K. Harada, N. Higashi, T. Honda,
- Y. Honda, T. Honma, X. Jin, E. Kako, Y. Kamiya, R. Kato, H. Kawata, Y. Kobayashi, Y. Kojima,
- T. Konomi, H. Matsumura, S. Michizono, C. Mitsuda, T. Miura, T. Miyajima, H. Miyauchi, Y. Morikawa,
- S. Nagahashi, H. Nakajima, N. Nakamura, K. Nakanishi, K. Nigorikawa, T. Nogami, T. Obina, F. Qiu,
- H. Sagehashi, H. Sakai, M. Shimada, T. Shioya, M. Tadano, T. Tahara, T. Takahashi, R. Takai, H. Takaki,
- O. Tanaka, Y. Tanimoto, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, M. Yamamoto

National Institutes for Quantum and Radiological Science and Technology (QST)

R. Hajima, K. Kawase, R. Nagai, M. Sawamura, M. Mori, N. Nishimori

National Institute of Advanced Industrial Science and Technology (AIST)


T. Sato, M. Kakehata, H. Yashiro

Hiroshima University M. Kuriki

National Institute of Technology, Akita College F. Sakamoto

SLAC Nora Peak Norvell

Institute of Modern Physics (IMP) CAS China Zong Yang

