熱収縮による波長の変化を用いた極低温用光ファイバ温度計の開発 R&D OF OPTICAL FIBER THERMOMETER FOR VERY LOW TEMPERATURE

清水 洋孝[#], 小島 裕二, 仲井 浩孝, 中西 功太, 原 和文, 本間 輝也 Hirotaka Shimizu[#], Yuji Kojima, Hirotaka Nakai, Kota Nakanishi, Kazufumi Hara, Teruya Honma

KEK High Energy Accelerator Research Organization

Abstract

Several accelerator facilities in KEK adopt the superconducting accelerator scheme. Currently, a combination of Nb superconducting accelerator cavities and liquid helium as a refrigerant for cavity cooling is used. Achieving this scheme, it is necessary to keep accelerator cavities as the superconducting state with refrigerating cycle. Precise measurement of temperature at several points is quite important for correct operation of the refrigerating cycle. To increase the temperature information, it could be a solution by increasing measurement points. However, assuming to use usual resistance temperature detectors, that kind of brute force method would meet cost increasing problem and thermal penetration problem through its metallic signal lines especially around the superconducting element regions. To overcome above difficulties, R&D studied of a different type of thermometer made of an optical fiber with Bragg gratings was started in KEK. In this report, the current status of the studies is reported.

1. はじめに

SuperKEKB や cERL 及び STF は、超伝導加速方式 を利用した加速器施設であり、その運転には、液体状態 のヘリウムや窒素を含む、大量の冷媒を使用する冷凍サ イクルを連続的且つ安定的に制御・運用する事が必要 である。この目的を達成する為には、サイクルの各段階 における冷媒の温度を正しく測定して、制御に反映させ る必要があるが、通常使われている様な測温体を用いた 場合では、測定点を増やす事に伴う費用の増加や、断 熱シールド内へ金属製の信号線を持ち込む事による熱 侵入の問題が生じる。これらの問題を克服する事を目的 として進めている、超流動へリウム環境の様な極低温領 域でも使用出来る光ファイバを用いた温度計の開発に ついて、現在 KEK において行っている実験の報告を行 う。

2. FBG の原理と特徴

光ファイバを温度計として用いる際に必要となる、測温 体に相当するのが、ファイバコア部分に施された、Bragg grating の構造である。この grating 構造は、アクリルの樹 脂を取り除いた光学用のファイバ素線に、外部から強力 なレーザーを照射する事で作製する事が可能であり、照 射するレーザーの交叉角や、照射時に使用する結晶格 子の格子間隔を調整する事で、任意の間隔の grating pitch を作製する事が出来る。ここで定められた grating pitch とファイバコア部分の屈折率の積によって、実効的 な光路長さが規定され、この光路長さの2倍に相当する 波長を持つ光だけが、Bragg grating 部分で選択的に反 射される。つまり、光ファイバへの入射光として、白色の 光源を用意すれば、Bragg grating 部分を通過する度に、 特定の波長成分だけが反射され、残りの入射光は通り抜 ける様な構造を作る事が出来る。

Figure 1: Optical flow through a measurement system.

ここまでの説明では、光ファイバに対する外的影響は 何も仮定されていなかったが、外部応力や温度変化等 の影響によって、grating pitch が変化した場合、それに 追随して、反射される光の波長も変化する。つまり、注目 する特定の grating 部分から反射されて来る光の波長 変化を測定する事で、grating 部分における環境変化の 様子を知る事が出来る事になる。Fiber Bragg grating (FBG) が持つこの性質を利用して、振動計や温度計と しての応用がこれまでにも行われてきた[1,2]。これら先 行の実験結果を参考にし、基本的な構成は踏襲しなが ら、超伝導加速器管の冷却に必要となる液体へリウム温 度領域や、超流動液体へリウム温度領域においても使 用可能な温度計を FBG を用いて開発する事が本研究 の目的である。

Figure 1 に以下の測定で用いた光学部品の構成図を 載せる。この構成では、fiber amplifier で作られた、自然 放出光を白色光源として用いている。光の流れとしては、 この白色入射光を optical circulator に入れ、その透過 光を FBG 側に通す。FBG で選択反射された波長成分 は、再び optical circulator を通って、白色光源が繋がっ ている port とは別の port から射出される。この port の先 には、optical spectrum analyzer が繋がっており、反射さ れて返って来た光の波長を常時測定する。FBG 部分が 何らかの原因で傷んでいないかを確認する為、FBG の

[#] hirotaka@post.kek.jp

透過光の光強度を power meter を使って測定し、構成 全体が正しく機能している事の保障とする。上の構成で は、低温部分に取り付けられるのは FBG の部分だけで あり、他の機器は常温部分に設置される。

Figure 2: Spectrum of the white light source.

Figure 3: Detected spectrum with 1040nm FBG.

Figure2 と 3 に、実験に用いた白色光源の波長分布 と、FBG によって選択的に反射された波長の測定結果 を載せる。光源としては、1030nm 程度から強度が立ち 上がり、1080nm 程度迄は充分に一定強度の光源として 使える事が見て取れる。対して、FBG で間引かれた波長 分布は、grating pitch (今の場合 1040nm) を中心値とし て、鋭い線スペクトルだけが測定されている様子が確認 出来る。つまり、他の 1030nm から 1080nm の同程度の 強度を持った波長成分は全て grating 部分を通り抜け、 選択的反射には寄与していない事が解る。今回実験に 用いた FBG は、タツタ電線[3]によって作成された物を 使用した。手持ちの白色光源の波長帯が上で述べた様 な範囲であった為、grating pitch としては、1040nm、 1050nm, 1060nm の物を用意した。中心波長の他に仕 様として指定出来る値として、grating 部分の持つ反射 率の値があるが、今回は初めての購入であった為、3本 とも全て 90%の反射率を指定した。ファイバ素線として用 いたのは、赤外用の非常に一般的なシングルモードファ イバであり、通常これらのファイバは、optical core と clad の外側を、アクリルの樹脂で覆った構造になっている。一 般的な外径としては、clad 径が ø 125um、アクリル樹脂ま でを含めると \$250um 程度の外径になる。Bragg grating の加工時には、このアクリルの樹脂部を一旦剥き去るが、 同じ素材での再コートを注文する事が出来る為、出来上 がった製品の grating 部分は、目印として付けられた赤

い境界線が無ければ、他の部分と見分けが付かない様 に仕上がっている。

Figure 4: Detected spectrum with sequential connection.

Figure 5: Spectrum shift by thermal effect.

Figure 4 に、異なる grating pitch を持つ FBG3本を、 直列に繋げた際に得られた反射光の波長分布を載せる。 それぞれの FBG が持つ 1040 から 1060nm までの反射 波長帯に、対応する鋭い peak が測定されている事が解 る。この測定結果は、FBG を温度計として利用する事の 大きな利点を表している。光ファイバを構成しているガラ ス質は、一般的な金属に比べて、10倍以上熱伝導率が 小さい。この為、信号線である光ファイバ自身を伝わって、 外部から侵入する熱量をそもそも非常に低く抑えられる 利点がある。更に、figure 4 で示される様に、異なる波長 帯の Bragg grating を一本のファイバに刻む事が原理的 に可能である事と、光ファイバの光学的損失がそもそも 非常に小さい事から、僅か一本の光ファイバを測定子兼 信号線として導入する事で、白色光源の許す範囲で多 点の測定が可能である事が解る。一般的な測温抵抗体 の場合、必ず金属製の信号線が必要であり、この数は測 定点を多く要求するに従って共に増える。この様に、 FBG の温度計としての利用は、特に低温領域での測定 に対し、著しく好ましい特徴を備えている事が理解出来 る。Figure 5 に、FBG が置かれた環境温度の変化に 伴って、実際に選択反射される波長が変わって行く様子 を載せる。中心波長が 1040nm の FBG をお湯に浸け、 水温の変化と反射波長の相関を測定した結果である。よ り広範囲に渡って測定を行う事で、常温付近では、温度 変化と波長変化が線形の関係にある事が確認出来た。 以上の基本的な試験の結果を踏まえ、以後より実際的な 冷媒での冷却試験に移る。

3. FBG を使った冷却実験

3.1 直接浸漬実験

より本来の使用目的に近い温度領域での FBG の振る 舞いを調べる為に、冷媒を使った直接浸漬実験を行っ た。Figure 6 に直接浸漬法についての概略図を載せる。

Figure 6: A schematic of direct dipping method.

断熱真空槽内に吊り下げた銅の heatsink によって FBG を包み込み、heatsink 全体を槽外から注入した冷媒で冷やし、その時の温度と波長の相関を測定する。冷媒としては、液体窒素と液体ヘリウムを用いた。冷媒中の heatsink の温度を測定する為に、FBG を保持している 銅板側面に穴を開け、Pt-Co 温度計を差し込み、取り付けてある。Figure 7 に直接浸漬法の測定結果を載せる。

Figure 7: A result plot of the direct dipping method.

図中青線が冷媒として液体窒素を使った場合の温度波 長相関、赤線が液体ヘリウムを使った場合の結果を示し ている。常温(~270K)では、両者の結果は良く一致し ている様に見えるが、温度が下がるに従って、両者の示 す反射波長の値の差が顕著になる傾向にある。最も差 が大きい液体窒素温度付近では約0.5nm程度の差が 生じている様に見える。異なる冷媒を用いた理由は、単 に測定温度領域を段階的に広げる為で、少なくとも同じ 温度領域では、当然両者の示す波長帯は一致している 事が期待されるが、何らかの考量されていない要因に よって、一方若しくは両方の温度波長相関の測定が、正 しく出来ていない様に思われる。

3.2 間接冷却実験

直接浸漬法で得られた結果から、光ファイバと冷媒との直接の接触が、FBG部分に何らかの変質をもたらしている事を疑い、冷媒を別途用意した容器内に封入する事で、直接FBGに触れさせない冷却方式を試す事にした。Figure 8 に間接冷却法についての概略図を載せる。

Figure 8: A schematic of indirect cooling method.

FBG の温度計開発の実験を始めるにあたり、FBG に汎 用性を持たせる為、敢えてファイバ同士は融着接合せず に、FC-APC 規格のコネクタ接続方式を採ってきた。又、 光ファイバ用の真空導入端子を持っていない事から、大 気と冷媒雰囲気間の区切りには、詰め物 (コンパウンド) を使っていた。高真空に耐える導入端子が有れば、小型 の冷凍機 (例えば Gifford-McMahon 冷凍機等) を使う 事で、冷媒の影響を受けない温度波長相関の連続的な 測定が出来る。しかし現在はまだ光ファイバ用真空導入 端子を作製する準備段階で、高い真空度での冷却試験 が出来ない為、雰囲気ガスとして空気(窒素)とヘリウム置 換環境を用いた間接冷却試験を行った。冷媒としては液 体窒素を用いた。中間に吊られた冷媒容器に液体窒素 を満たし、真空断熱槽内に吊られた heatsink を、雰囲気 ガスの対流を以って冷やす。ここで得られた結果を、真 空中行う同様の試験結果と比べる事で、FBG と接触する 雰囲気ガスが温度波長相関に与える影響についての知 見が得られる筈である。間接冷却試験からは、冷媒容器 の底面にも Pt-Co 温度計を取り付け、温度変化を測定し ている。Figure 9, 10 では、ch.1 が heatsink 部分、ch.2 が冷媒容器部分の温度をそれぞれ示している。

Figure 9: Indirection cooling results (Air).

Figure 10: Indirection cooling results (He).

Figure 9 は空気(窒素)雰囲気中で冷却を行った結果 を、Figure 10 はヘリウム雰囲気での結果をそれぞれ示 している。Figure 9 では、冷媒容器・heatsink 共に、液体 窒素温度に到達しており、それぞれの温度計が、核沸騰 状態を表す様な、急激な温度低下を示している。対して ヘリウム置換を行った figure 10 の場合、そもそも冷媒容 器温度が 80K を下回らず、これに伴い heatsink 温度の 方も 100K 以下には到達出来ていない。これは熱伝導 の良い He が槽内に充満しており、冷媒容器を介した局 所的な冷却の効果が、槽全体に拡散されて、特定の場 所だけが低い温度に到達するのが難しい事を示しており、 確かに槽内が置換されている証拠となる。両者の温度波 長相関の結果を figure 11 に載せる。

Figure 11: Measurement results of atmospheric gas effect.

直接浸漬法から間接冷却法に切り替える際に、直接浸 漬法で使っていた 1040nm の FBG が切れてしまい、代 わりに 1050nm の FBG を使って実験を行った。1060nm の FBG も含め、これら3本は異なる grating pitch を持つ 事以外は、同じファイバ素線である為、温度に対する波 長の応答に関しても、中心波長が異なるだけで変化量 は等しくなる事が期待される。この考察から、1040nm の FBG を使った際に得られた常温付近の測定結果を再現 する様に、1050nm の FBG で得られた結果を約 10nm 短波長方向に平行移動して、直接比較が出来る様に plot した物が figure 11 である。即ち、直接浸漬法の結果 (figure 7) と、間接冷却法で得られた結果が重ねて描か れている。

直接浸漬と間接冷却の結果を比べると、冷却の方法に 関わらず、雰囲気ガスとして働いた気体が窒素であるか ヘリウムであるかによって、温度波長相関の結果が大きく 異なっている事が見て取れる。直接浸漬法だけに頼った 場合、これ以上の両者の切り分けが難しいが、間接冷却 法に移る事で、真空中での冷却実験を行う事が出来る 為、それぞれの雰囲気ガスがどの様に波長に影響を与 えていたかが、今後実験的に検証出来ると考えられる。

4. 考察

上で述べた測定以外にも、様々な温度波長相関の測 定を行った。直接浸漬法の場合、液体ヘリウムを用いた 時より、液体窒素を使った場合の方が、反射波長の再現 性に難があった。先行して行われている研究によると、ア クリル樹脂を使って grating 部分に保護膜を形成した場 合、樹脂の熱収縮率の高さから、最も感度の良い波長変 化が得られる事が解ったが、一方では、波長の再現性が 部分的に不安定であったと言う結果が報告されている[4]。 我々が行った測定でも、液体窒素温度領域だけでなく、 常温部分の波長再現性に関しても不安定さが見られた。 また、通常の測温抵抗体は、製品として出荷される前に、 想定される使用温度領域での thermal cycle training を 受けるのが一般的とされていて、その結果一定の精度を 上回った物が使用される。これに倣うと、FBG 温度計に 関しても、極低温から常温付近までの熱循環を何度か経 て、安定した素線を実際の測定に使う事が必要なのかも 知れない。アクリル樹脂を使った保護膜が、clad 部分に 充分に馴染んでいない様な場合が例として考えられて、 大きな温度勾配に不安定な保護膜が曝された際に、滑 りが発生する事で波長再現性が悪くなる恐れがある。こ の様な原因で再現性が得られていない場合、実際の熱 循環試験で個性を調べ、選別する事が重要と思われる。

5. まとめ

超流動へリウム環境の様な極低温領域でも使用出来る 光ファイバを用いた温度計の開発を行っている。この Bragg grating を利用した温度計の方式は、光ファイバ自 身の熱伝導率の低さと、一本のファイバを導入するだけ で多点測定が可能となる点から、熱侵入を嫌う極低温領 域での利用と言う要求に、合致した特徴を備えている。

これまでに行った冷媒を使った温度波長相関の測定 から、FBG が置かれた空間の雰囲気ガスが、測定される 波長に影響を及ぼしている考えられる結果が得られた。 今後真空系での使用に必要な道具を作製し、測定を進 めたいと考えている。また、極低温領域での温度感受性 を高める、独自の機構についても、有限要素法を用いた 計算を進めており、併せて開発を行っていく予定である。

参考文献

- Y. Murofushi *et al.*, "ファイバブラッググレーティングを用いた振動計", 沼津工業高等専門学校研究報告, 第 48 号, pp. 15-18, 2014 年.
- [2] H. Yamada et al., "光ファイバを用いた極低温機器の温度 測定技術の開発", 鉄道総研報告 2012 年 5 月号 p23-28.
- [3] http://www.tatsuta.co.jp/
- [4] H. Yamada *et al.*, "極低温機器の温度を監視する", RRR, 2013 年 10 月号, pp.12-15 (2013).