# 60 MeV 電子ライナックを用いた光核反応による RI 製造のための

# 照射γ線のプロファイル測定

# PROFILE MEASUREMENTS OF GAMMA–RAY FOR RADIOACTIVE ISOTOPE PRODUCTION VIA PHOTONUCLEAR REACTION USING A 60 MEV ELECTRON LINAC

高橋 健<sup>#, A)</sup>, 柏木 茂<sup>A)</sup>, 日出 富士雄<sup>A)</sup>, 武藤 俊哉<sup>A)</sup>, 南部 健一<sup>A)</sup>, 長澤 育郎<sup>A)</sup>, 東谷 千比呂<sup>A)</sup>, 小林 恵理子<sup>A)</sup>, 濱 広幸<sup>A)</sup>

Ken Takahashi<sup>#, A)</sup>, Shigeru Kashiwagi<sup>A)</sup>, Fujio Hinode<sup>A)</sup>, Toshiya Muto<sup>A)</sup>, Kenichi Nanbu<sup>A)</sup>, Ikuro Nagasawa<sup>A)</sup>, Chihiro Tokoku<sup>A)</sup>, Eriko Kobayashi<sup>A)</sup>, and Hiroyuki Hama<sup>A)</sup> <sup>A)</sup> Research Center for Electron Photon Science (ELPH), Tohoku University

#### Abstract

Radioactive isotopes have been produced via photonuclear reaction using a 60 MeV high-power electron linac for research fields of nuclear chemistry and radioactive analysis at Research Center for Electron Photon Science, Tohoku University. For a photonuclear reaction, Bremsstrahlung gamma ray is created by electron beam irradiating a 2 mm thickness platinum or tungsten target. The electron beam with the beam energy of 60 MeV and the average current more than 100 A is extracted from the vacuum through a Titanium thin foil. It is crucial to understand the beam property such as beam emittance and Twiss parameters at the electron - gamma ray converter to optimize a gamma ray profile to satisfy user experimental requirement. The emittance measurement employing a quadrupole scanning method and the gamma ray profile measurements using imaging plates have been studied. The current status of these measurements is reported.

### 1. はじめに

東北大学電子光理学研究センターでは大強度電子 ライナックを用いて光核反応による RI 製造を行って いる。最大 60 MeV まで加速した平均電流 100 μA 以 上の電子ビームを薄い Ti 箔に通して大気へ取り出す。 ビーム軌道上に白金やタングステン板等のγ線生成 用コンバータを挿入し、生成された制動放射γ線と 試料の光核反応で放射性同位体を製造する。試料と コンバータの距離の最適化や様々なサイズの試料へ の照射に対応していくためには、照射位置でのγ線 プロファイルを目的の光核反応同位体製造に最適化





<sup>#</sup> ken\_takahashi@lns.tohoku.ac.jp

する必要があり、加速器の運転パラメータや電子 ビームプロファイルを把握することが重要である。 今回、Q-Scan 法を用いた電子ビームのエミッタンス 測定と、Ni 箔へのγ線照射により生成した <sup>57</sup>Ni の放 射能強度分布測定からγ線プロファイルの測定を 行った。

## 2. 60 MeV 大強度電子ライナック

80 kV 電子銃の高圧パルスユニットでカソードから 300 pps で引き出した電子ビームをプリバンチャー、バンチャーで集群する。S-band 25 MW クライストロン2 台と1 m 加速管 8 本で 60 MeV まで加速して、ビーム偏向部で 90°進行方向を曲げて照射室へビームを輸送する(Figure 1)。利用運転時のエネルギーは最大 60 MeV でピーク電流 100 mA パルス幅 4  $\mu$ s となっている[1]。

## 3. エミッタンス計測

### 3.1 Q-scan 法

ビームエミッタンス測定には、四極電磁石での ビームの輸送において、測定点でのRMSビームサイ ズが四極電磁石の収束力 k に依存することを利用し た Q-scan 法を用いた[2, 3, 4]。

今、初期のビームエミッタンスと Twiss parameter を $\varepsilon$ ,  $\beta$ ,  $\alpha$ ,  $\gamma$ , 自由空間の転送行列をS、収束力kの 四極電磁石の転送行列をQ(k)とすると、全体の転送 行列TはT(k) = SQ(k)と表せる。



Figure 2: Experimental apparatus of Q-Scan @ SM2 (left) Q-Scan @ SM5 (right).

測定点までの Twiss parameter の転送行列は

$$\begin{bmatrix} \boldsymbol{\beta} \\ \boldsymbol{\alpha} \\ \boldsymbol{\gamma} \end{bmatrix} = \begin{bmatrix} T_{11}^2 & -2T_{11}T_{12} & T_{22}^2 \\ -T_{11}T_{21} & T_{11}T_{22} + T_{12}T_{21} & -T_{12}T_{22} \\ T_{21}^2 & -2T_{21}T_{22} & T_{22}^2 \end{bmatrix} \begin{bmatrix} \boldsymbol{\beta}_0 \\ \boldsymbol{\alpha}_0 \\ \boldsymbol{\gamma}_0 \end{bmatrix}$$
(1)

で表せ、測定点でのビームサイズ**の**は

$$\sigma = \sqrt{\varepsilon\beta} = \sqrt{\varepsilon(\beta_0 T_{11}^2(k) - 2\alpha_0 T_{11}(k)T_{12}(k) + \gamma_0 T_{12}^2(k))}$$
(2)

と表される。今、測定点までの距離は決まっていて 電磁石の収束力 k は設定可能である。ここである k<sub>i</sub> の時に測定されたビームサイズをσ<sub>i</sub>とすると

$$\chi^{2} = \sum_{i} (\sigma_{i}) -\sqrt{\varepsilon(\beta_{0}T_{11}^{2}(k_{i}) - 2\alpha_{0}T_{11}(k_{i})T_{12}(k_{i}) + \gamma_{0}T_{12}^{2}(k_{i}))}^{2}$$
(3)

を最小にする $\beta_0, \alpha_0, \gamma$ を求めることでビームエミッタンス $\epsilon$ を決定する。

### 3.2 加速管 A8 出口での Twiss parameter

利用運転時のコンバータまでのビーム軌道エンベ ロップを確認するため、(1)を用いて A8 出口での Twiss parameter を求めた。



Figure 3: Measured beam sizes squared and fitted  $\sigma^2(k)$  Q-Scan @ SM2 (Top) Q-Scan @ SM5 (Bottom).

#### 3.3 エミッタンス計測@SM2

ビーム加速部下流の診断部にある四極電磁石と 50  $\mu$ m 厚のアルミナ蛍光板のスクリーンモニタ SM2 で Q-Scan 法を用いてエミッタンスの測定を行った。四 極電磁石は 3 台あり発散、収束、発散の順番で設置 されている(Figure 2)。今回は水平、垂直方向ともに 最下流の四極電磁石 TQ3 の k 値を変えて、1.5 m 先 の蛍光板でビームサイズが最小となる k 値付近の計 11 点でサイズを測定した。測定したビームサイズの 自乗とフィッテングで求めた $\sigma^2$ (k)を Figure3 に示す。 エミッタンスはそれぞれ 0.722 (水平)、0.729 mm mrad (垂直)と求まった(Table 1)。

### 3.4 エミッタンス測定@SM5

ビーム偏向部下流の四極電磁石と 1 mm 厚のアル ミナ蛍光板のスクリーンモニタ SM5 でも同様に Q-Scan 法でのエミッタンス測定を行った。四極電磁石 は発散、収束の順で設置されている(Figure 2)。水平 方向は電磁石 QM3D の k 値を変化させて約 4 m 先の 蛍光板でビームサイズが最小となる点を含む 6 点で サイズを測定した。垂直方向の測定は電磁石 QM3F の k 値を変えてビームサイズが最小となる k 値付近 の 7 点でサイズを測定した。測定したビームサイズ の自乗とフィッテングで求めた  $\sigma^2$ (k)を Figure 3 に示 す 。エミッタンスはそれぞれ 0.927 (水平)、0.712 mm mrad (垂直)と求まった(Table 1)。

# 4. 通常利用運転時の輸送オプティクス

試料の位置での光核反応に制動放射γ線を最適化 するにあたって、γ線生成用コンバータに入射する

Table 1: Estimated Electron Beam Emittance and Twiss Parameters at Accelerating Structure 8 Exit

|                 | $\varepsilon_x$ [mm mrad] | $\epsilon_y$ [mm mrad] | β <sub>x</sub> [m] | β <sub>y</sub> [m] | αx    | αy    |
|-----------------|---------------------------|------------------------|--------------------|--------------------|-------|-------|
| by Q-Scan @ SM2 | 0.722                     | 0.799                  | 9.71               | 8.44               | -2.65 | -2.78 |
| by Q-Scan @ SM5 | 0.937                     | 0.712                  | 20.8               | 314                | 2.15  | -30.9 |



Figure 4: Expected envelops of e<sup>-</sup> beam trajectories for the normal operation from the accelerating structure exit to the tungsten target.

電子ビームのエミッタンスや Twiss parameter は重要 な情報である。

SM2とSM5の二箇所でそれぞれから求めた加速管 出口でのエミッタンスとTwiss parameter をもとに、 通常利用運転時の電磁石パラメータでのそれぞれ軌 道エンベロップの確認を行った(Figure 4)。今、加速 管出口からの距離をsとして、sの位置までの電磁石 の転送行列をT(s)としたとき、任意の場所でのベー 夕関数は、

$$\beta(s) = \beta_0 T_{11}^{2}(s) - 2\alpha_0 T_{11}(s) T_{12}(s) + \gamma_0 T_{12}^{2}(s)$$
(4)

と表せる。

水平方向の軌道エンベロップは絶対値に違いはあ るが同様のオプティクスでビームが輸送されること が分かり、利用運転での電子ビームの軌道エンベ ロップを再現していると思われる。

垂直方向の軌道エンベロップは二箇所のエミッタ ンス測定では一致しなかった。SM2 を用いたエミッ タンス測定の結果からは、偏向部出口で垂直方向に ビームが極端に大きくなっているが、偏向部出口に あるスクリーンモニタ SM4 で測定したビームプロ ファイルは $\sigma_y$  = 4.6 mm で、エミッタンス測定から計 算される $\sigma_y$  = 17.7 mm ( $\beta_y$  = 391 m)と大きく異なる。 また、SM5 の測定を用いると加速管 A8 出口でベー タ関数が非常に大きくなってしまう。

このようにビーム偏向部を介して垂直方向の Twiss parameter に違いが見られることから偏向部と その前後に何らかの垂直方向の収束力があることが 考えられ、今後オプティクスの調査を行った上で二 箇所でのエミッタンス測定の結果が一致するかどう かの確認を行う。

### 5. γ線プロァイルの測定

5.1 <sup>57</sup>Ni でのy線プロファイル復元

現在の電子光理学研究センター大強度電子ライ ナックはRI製造や放射性同位元素を用いた研究での 利用が主である。今回、制動放射γ線を用いた光核 反応の最適化を行うための基礎的データ収集を目的 として利用者の協力を得てプロファイルの測定を 行った。厚み 10 μm の Ni 箔に制動放射γ線を照射し て生成される放射性同位元素 <sup>57</sup>Ni の分布をイメージ ングプレートで測定することによってγ線のプロ ファイルを測定する [5]。

#### 5.2 測定セットアップ

測定のセットアップを Figure 5 に示す。制動放射γ 線を生成するコンバータの厚みは通常の利用運転と 条件を同じにするためにタングステン 1 mm 厚を 2 枚用いて計 2 mm とした。プロファイルの取得場所 は 3 か所で、コンバータ上、実際の試料が置かれる 位置(コンバータの下流 3 cm)、γ線の広がりを見るた めの試料の場所から 3 cm 下流(コンバータの下流 6 cm)とした。設置した Ni 箔の厚みは 10 ミクロンであ る。

5.3 照射する電子ビーム

利用運転では照射試料の大きさが直径 10 mm である。コンバータの場所に設置した調整用 BeO 板での 発光を直径 10 mm 程度に調整した電子ビームとコン



Figure 5: Experimental apparatus for irradiating Ni thin films.



Figure 6: Restored profiles of <sup>57</sup>Ni by imaging plates.

バータ直前での Q-Scan を想定したビームプロファイ ルで照射を行った。ビームの繰り返しは、今回の セットアップでのコンバータ冷却性能を考慮して 100 pps とした。イメージングプレートで測定した <sup>57</sup>Ni のプロファイルを Figure 6 にそれぞれ示す。 ID01, ID12 にはイメージングプレート BAS-IP SR 2025 E を、ID20, ID27, ID30, ID37 には BAS-IP MS 2040 E を使用した。

### 5.4 利用運転時のγ線プロファイル

利用運転パラメータで照射した ID20 の <sup>57</sup>Ni 放射 能強度分布とその射影を Figure 7 に示す。ID20 と ID30 について分布のピークでプロファイルを切り出 して半値幅を求めた。それぞれ水平、垂直方向の順 に試料の位置で 12.1 mm、11.4 mm 、試料の 3 cm 下 流で 17.1 mm、16.6 mm であった(Figure 8)。調整の



Figure 7:  $\gamma$ -ray profile of the normal operation at a target position by imaging plate.



Figure 8: An expected electron beam size (FWHM) and measured  $\gamma$ -ray beam sizes (FHWM) along the beam axes for a normal linac operation.

BeO 板で直径 10 mm 程度に揃えた電子ビームで縦横 比の揃ったγ線を生成できていることを確認できた。

電子ビームの軌道エンベロップから予想されるタ ングステンの位置でのビーム半値幅は 8.6 mm(水平)、 12.1 mm(垂直)で、測定から想定されるγ線の発生点 での半値幅と矛盾し、また縦横比も揃っていない。 このγ線プロファイル測定の結果からもビーム偏向 部のオプティクス確認が必要であることが分かった。

### 5.5 <sup>57</sup>Ni プロファイルでの Q-Scan

Figure 6 のコンバータ上の Ni 箔(ID01, ID12)での <sup>57</sup>Ni 強度分布は Q-scan のプロファイルを反映してい ることは確認できたが GEANT でのシミュレーショ ンの結果から、コンバータ上の Ni 箔で<sup>57</sup>Ni が生成さ れる主な要因は電子ビームではなく約 10 cm 上 流に あるビーム引き出し用の 50 μm 厚 Ti 箔と約 5 cm 上 流にあるビームプロファイル調整用の 0.5 mm 厚 BeO 板で生成された制動放射γ線が主であることが分 かった[6]。今後シミュレーションとの比較からタン グステン直前での電子ビームのプロファイルを復元 できるかどうか検討する。

#### 6. まとめ

東北大学電子光理学研究センターでは大強度電子 ライナックを用いた光核反応による RI 製造を行って いる。照射位置でのγ線プロファイルを光核反応同 位体製造に最適化するため、加速器のエミッタンス 測定と制動放射γ線のプロファイル測定を行った。

Q-Scan 法でのエミッタンス測定の結果から、加速 後の電子ビームのエミッタンスは $\epsilon_x = 0.722$  mm mrad、  $\epsilon_y = 0.799$  mm mrad と測定された。垂直方向の電子 ビーム軌道エンベロップが二箇所のエミッタンス測 定の結果で矛盾することから、今後ビーム偏向部の オプティクスを調査して再度エミッタンス測定を行 う。

通常利用運転時のビーム輸送と照射セットアップ を模擬することでタングステンからの制動放射γ線 のプロファイルとサイズの広がりを確認した。イ メージングプレートで復元した照射位置でのγ線プ ロファイルのサイズは半値幅で、12.1 (水平)、11.4 mm (垂直)であった。

今後、イメージングプレートのプロファイルから の生成した<sup>57</sup>Niの放射能の強度を見積もり、γ線プロ ファイルの実験とシミュレーションの比較、シミュ レーションの評価を行い、基礎的なデータ収集を行 うことで電子ライナックを用いた RI 製造の最適化を 図っていく。

今回実験や解析を行う上で協力を頂いた同セン ター光量子反応研究部門の方々に深く感謝します。

# 参考文献

- [1] Shigeru Kashiwagi, "大強度電子加速器と RI 製造",東北 大学電子光理学研究センター研究会「大強度電子ビー ムとその応用利用」, Mar. 16-17, 2015.
- [2] H. Braun, "Emittance Diagnostics", CAS Beam diagnostic Dourdan, 2.6.2008.
- [3] M. Minty, "Diagnostics II", CERN Accelerator School, Sept 2004.
- [4] D. Brandt, "Introduction to Accelerators", CAS Platja d'Aro 2006.
- [5] Hidetoshi Kikunaga, "制動放射線照射で製造できる RI", 東北大学電子光理学研究センター研究会「大強度電子 ビームとその応用利用」, Mar. 16-17, 2015.
- [6] Kyo Tsukada, Private communication.