PASJ2014-SUP124

理研 RIBF における稀少 RI リングの現状 PRESENT STATUS OF RARE-RI RING AT RIKEN RIBF

山口由高*^{A)}、若杉昌徳^{A)}、阿部康志^{A),B)}、洲嵜ふみ^{A),C)}、藤縄雅^{A)}、加瀬昌之^{A)}、込山美咲^{A)}、熊谷桂子^{A)}、 眞家武士^{A)}、長江大輔^{B)}、大西純一^{A)}、小沢顕^{B)}、上坂友洋^{A)}、渡邉裕^{A)}、山口貴之^{C)}、山澤秀行^{A)}、

柳澤善行^{A)}、銭廣十三^{A)}、矢野安重^{A)}、

Yoshitaka Yamaguchi^{*A)}, Masanori Wakasugi^{A)}, Yasushi Abe^{A),B)}, Fumi Suzaki^{A),C)}, Tadashi Fujinawa^{A)},

Masayuki Kase^{A)}, Misaki Komiyama^{A)}, Keiko Kumagai^{A)}, Takeshi Maie^{A)}, Daisuke Nagae^{B)}, Jun-ichi Ohnishi^{A)},

Akira Ozawa^{B)}, Tomohiro Uesaka^{A)}, Yutaka Watanabe^{A)}, Takayuki Yamaguchi^{C)}, Hideyuki Yamasawa^{A)},

Yoshiyuki Yanagisawa^{A)}, Juzo Zenihiro^{A)}, Yasushige Yano^{A)}

A)RIKEN Nishina Center

^{B)}University of Tsukuba

^{C)}Saitama University

Abstract

We are constructing the isochronous storage ring named "Rare-RI Ring (R3)" at RIKEN RI Beam Factory. R3 has a hexagonal symmetry structure. The circumference is about 60.35 m. One of the most important topic is an isochronous design. In order to form a precise isochronous condition inside the R3, we installed ten trim coils in the two outer dipoles among the four dipoles in each arc section. R3 is the most favorable equipment for measuring the mass of rare-RIs by using relative TOF measurement method in an isochronous condition. A rare-RI will be injected into the R3 by injection septum and kicker magnets combination. The kicker magnetic fields triggered by the injected rare-RI itself is already excited at the time of the rare-RI arrival. After about 700 μ s, the rare-RI will be ejected from the R3 by same kicker and extraction septum magnets combination. The detectors for measuring TOF are installed just before injection septum magnets and just after extraction septum magnets, respectively. The target performance of R3 is to determine the mass in an accuracy of the order of ppm by only one rare-RI. Here, we report on the present status of R3.

1. はじめに

稀少 RI リングは、理研仁科センター (RNC) の RI ビー ムファクトリー (RIBF) を最大限に活用すべく考えられ た基幹実験設備の1つである。第5回日本加速器学会年 会にて、本プロジェクトの現状を報告した際には、長い 入射ラインを新たに設け、等時性蓄積リングとして使用 するセクター電磁石は、新規製作する予定であった^[1]。 しかし、当時より技術的な課題となっていた次の2点

- 個別入射を実現するための「高速応答キッカーシ ステムの開発」
- 統計にたよらない測定を実現するための「高精度 等時性磁場の形成」

の検証が進むにつれ、入射ラインは既存の装置^[2]から 延長するだけで十分であると決断でき、一方でリング として使用する電磁石には、譲り受けた TARNII 偏向電 磁石^[3]を若干改良するだけで、ほとんど性能を落とさ ずに再利用可能であると結論づけた。その後、2011 年 度末まで詳細検討を行い、2012 年度1年でリング用ス テージ、天井クレーン、電力系及び冷却系などの付帯 設備を整え^[4]、精密測量した基準点を設け電磁石等の 粗据付けを行い、装置全体の概形を完成させた。2013 年度には、再利用する電磁石の健全性確認に始まり、各 DC 電源の実負荷試験、電磁石の精密アライメント、真 空機器接続、ベーキング用機器及び制御系の整備などを 着実に進め現在に至る。

2. 装置に求める性能

最近の研究により少しずつ理解されつつある、超新 星爆発もしくは中性子星合体などを起源^[5]とするrプ ロセスにより作られた元素には、金やウラン、さらに今 や生活になくてはならないレアアースが多く含まれる。 このrプロセスという重要な元素合成過程には、非常に 多くの中性子過剰な放射性同位元素 (RI) が関わってい ることが知られている。これら RI には、上記の爆発的 な現象の特徴が記録されているため、その基本的物理量 を調べることは重要である。我々がまず目指すのは、そ れら RI の系統的な質量精密測定である。ただ、それら RI は地上には存在せず、RIBFの能力をもってしても作 り出すのが容易ではない稀少なもので(稀少 RI)、さら に多くは極短寿命であるため、測定する装置に工夫がい る。そこで我々は、稀少 RI が1日数イベントしか生成 されなくてもそれを効率良く捕らえ、測定時間1ms以 内かつ ppm オーダー (~100 keV オーダー) の精度で質 量を決定できる能力を持った装置「稀少 RI リング」を 提案し建設を開始した。

概念設計を図1に示す。稀少 RI リングは SRC 及び BigRIPS の後段に位置する。BigRIPS の F3 焦点面に至 るまでに、質量を測りたい稀少 RI を含んだある限定さ れた RI だけを選別できる。F3 焦点面では、選別された RI 毎にキッカー電磁石を励磁するためのトリガ信号を 発生させる。そして、それぞれの RI が入射ビームライ ンを通りキッカー電磁石に到達する時には、自身が発生 したトリガ信号によってキッカー電磁石は既に励磁され ているので、キッカー磁場を感じリングの平衡軌道に入

^{*} yamaguch@ribf.riken.jp

PASJ2014-SUP124

り周回することができる (個別入射^[6])。質量は等時性 が高精度で保証されている空間内において、RI が周回 (飛行)する時間 (TOF) を測定することで導出する。TOF 測定で用いる検出器はリングの入口と出口にそれぞれ 設置し、出射ビームライン上には粒子識別するための検 出器を設ける。

Figure 1: Schematic diagram of mass measurement using Rare-RI Ring.

3. 相対値測定による質量導出

未知の $RI(m_1/q_1)$ の質量は、質量が ppm 以上の高精 度で知られているリファレンス $RI(m_0/q_0)$ に対する相対 値測定で導出する。2つの RI が同じ磁気剛性の時、等 時性リング中での飛行軌道は同じなので、

$$\frac{m_0}{q_0}\gamma_0\beta_0 = \frac{m_1}{q_1}\gamma_1\beta_1\tag{1}$$

$$T_0\beta_0 = T_1\beta_1 \tag{2}$$

という関係が成り立ち、未知の RI の質量は、

$$\frac{m_1}{q_1} = \left(\frac{m_0}{q_0}\right) \frac{T_1}{T_0} \sqrt{\frac{1 - \beta_1^2}{1 - \left(\frac{T_1}{T_0}\right)^2 \beta_1^2}} \tag{3}$$

によって求めることができる。すなわち周回時間 $T_{0,1}$ の測定と、それとは独立に速度 β_1 も測定すれば良い。 また、 m_1/q_1 を ppm オーダーで決定するには、

$$\frac{\delta(\frac{m_1}{q_1})}{\frac{m_1}{q_1}} = \frac{\delta(\frac{m_0}{q_0})}{\frac{m_0}{q_0}} + \gamma_0^2 \frac{\delta(\frac{T_1}{T_0})}{\frac{T_1}{T_0}} + k \frac{\delta\beta_1}{\beta_1}$$
(4)

$$k = -\frac{\beta_1^2}{1 - \beta_1^2} + (\frac{T_1}{T_0})^2 \frac{\beta_1^2}{1 - (\frac{T_1}{T_0})^2 \beta_1^2}$$
(5)

の関係より、リファレンス RI の m_0/q_0 値が ppm オー ダーでわかっていることはもちろん、等時性が ppm オー ダーで保証され、 m_1/q_1 が m_0/q_0 と比較して 1 %以内の 違いである限り、周回時間 $T_{0,1}$ の測定精度が ppm オー ダーで達成されれば、 $k \sim 10^{-2}$ なので、速度 β_1 は 10^{-4} の精度で測定すればよい。

周回時間 $T_{0,1}$ は、リングを数百 μ s だけ飛行させ、数 + ps の分解能で測定を行なうことで精度を出すことが 可能であり、 β_1 は上流の入射ビームラインで測定する ことによって精度を出すことは可能である。

4. 稀少 RI リングを構成する機器

Figure 2: Layout of devices constituting R3.

4.1 入射ビームラインとリング本体

稀少 RI リングを構成する各機器のレイアウトを図 2 に示す。入射ビームラインは、10 台の四極電磁石及び 1 台の偏向電磁石で構成されている。四極電磁石は、以前 は KEK の 12 GeV プロトンシンクロトロン (KEK-PS) として活躍していた電磁石を 2009 年に譲り受けた。ボ ア半径は 50 mm、有効長は 600 mm、最大磁場勾配は 18 T/m である。一方偏向電磁石は、リング本体のセク ター電磁石として再利用している偏向電磁石と同様に、 TARNII 偏向電磁石を再利用したものである。偏向角は 15 度、曲率半径は 4.045 m、ギャップは 80 mm、最大磁 場は 1.6 T となる。

リング本体は6セクター対称構造であり、4台の偏向 電磁石で1セクターを構成、計24台となる。直線部は 約4.02 mであり、リング中心軌道の周長は約60.35 m となる。運動量中心($\Delta p = 0$)のベータトロンチューン は水平方向、垂直方向それぞれ $\nu_x = 1.21, \nu_y = 0.84$ である。また、ディスパージョンは $D_x = 6.7$ mであり、 運動量アクセプタンスは $\Delta p/p = 1\%$ となる。一方、横 方向のアクセプタンスは入射ビームラインで制限され、 水平方向、垂直方向ともに $\epsilon_x = \epsilon_y = 20\pi$ mm·mrad 程

Figure 3: Calculation result of the deviation from an ideal isochronous field when the central magnetic field is 1.5 T.

度となる。そのアクセプタンス範囲内の等時性度を保証 するために、各セクター4台の偏向電磁石のうち外側 2台にトリムコイルを10本ずつ設け、ppmオーダーで 等時性を調整できるよう改良した。図3は、各トリム コイルの電流値を変数とし最適解を得た場合の1例で、 理想的な等時性からのずれを示している。運動量アクセ プタンスに加え横方向アクセプタンスを考慮した範囲 内(x~100 mm)の理想値からのずれは±30 mG以下で あり、中心磁場1.5 T に対し±2 ppm以内に収まってお り、10本のトリムコイルを用いて調整が可能であるこ とがわかる。これまで、TARNII 偏向電磁石をどう改良 すればよいのかあらゆる可能性を検証したが、トリムコ イルを設けることが最善であると判断した。

4.2 入射及び出射スキーム

入射ビームラインを通過した RI は、2 台の入射セプ タム電磁石によりリングの入射軌道へ導かれる。偏向 角及び曲率半径はそれぞれ 12.7 度と 5.3 度、5.05 m と 13.0mである。2台目のセプタム電磁石出口における入 射軌道中心は、リングの周回軌道中心から外側に90mm となる。リングの外側へ入射された RI は、水平方向の ベータトロンチューン *v*_x に従い大きく蛇行しながら進 む。出射セプタム電磁石を設けた直線部を通過する時に 入射軌道は、周回軌道中心より内側に膨らむためそこで ロスすることは無い。さらに蛇行しながら進み、位相進 度が 3π/2 の位置にあるキッカー電磁石により約 12 mrad 蹴られる。その際、ディスパージョンマッチングをとる ことで、様々な運動量を持つ RI は、それぞれの平衡軌 道へ蹴り入れられ周回を始める。典型的には核子当たり 200 MeV の RI がリングを 2000 周回る時間の約 700 µs 後、同じキッカー電磁石により同じ量だけ磁場を感じ蹴 り出され出射軌道に入る。そして、キッカー電磁石を軸 に入射軌道を折り返したような軌道をとりながらリン グ内を大きく蛇行し出射セプタム電磁石に到達、リング の外に出されるスキームである。尚、出射セプタム電磁 石は入射セプタム電磁石と同じ仕様となる。

4.3 キッカーシステム

個別入射^[6]を実現するためには、入射ビームライン を長くするかもしくはキッカーを高速で動作させるか のどちらかが必須であるが、コスト面も考慮し我々が目 指したのは、キッカーをできるだけ高速で動作させるこ とにより、入射ビームラインをどこまで短くすることが 可能かということであった。キッカー高速化の要はパル ス電源の応答速度である。必要な充電電圧が 75 kV と 高いため、スイッチとして使用できるのはサイラトロン のみということを前提に、サイラトロンを動作させるた めに必要なゲートパルス発生回路を改良することで高 速化を試みた^[7]。図4は、実機仕様のパルス電源の実 負荷試験時に、サーチコイルを用いて得られた磁場測定 データの1例である。充電電圧は20kVで、計算値と ほぼ等しい磁場強度が得られているが、インピーダンス ミスマッチのせいでフラットトップがくずれ、立ち下が り部にも反射波が見える。これについては現在、実負荷 となるキッカー電磁石を改良中である。ここで注目すべ きは、パルス電源へのトリガ信号入力から磁場フラット トップ中心までの遅延時間が、450 ns 以内を実現してい ることであり、我々が目標としていた応答時間(520 ns) をクリアしている。

Figure 4: Performance of the fast-response kicker system. Black wave form indicates the kicker magnetic field at the time of the 20 kV charge.

一方、入射から出射まで典型的には 700 µs という短 い時間内に、キッカー電源1台(サイラトロン1台)で、 入射用と出射用のキッカー磁場を発生させる必要があ るため、我々は「ハイブリッド充電システム」を開発し た。この充電システムは、主充電系と補充電系で構成さ れる。主充電は、全体の 90 % 充電を約 100 μs で達成 し、残りの10%分を補充電が約100 µs かけて徐々に行 なう。100% 充電に要する時間は約 200 μs で、サイラ トロンの約 500 μs という回復時間を考慮すると、再充 電完了までの時間は 700 μs を実現できる。さらに、入 射のタイミングは RI 自身が決めるので、100 % 充電状 態を保つ必要がある。その役割を担うのは補充電であ り、充電状態を監視し 100% を維持するよう常に働き かける。その精度は1%以内を達成している^[7]。図5 は、実機仕様のパルス電源の実負荷試験時に得られた データで、主充電のパルストランスを用いた正弦半波に よる充電が行なわれた直後に、補充電のパルストランス と 500 kHz の共振回路による充電が始まり、200 µs 程 度で100%充電を完了するハイブリッド充電システム が、正常に動作する様子を示す。

Figure 5: Performance of the hybrid charging system. Green, blue and red wave forms indicate the main-charger, the sub-charger, and charging voltage, respectively.

これら稀少 RI リングには欠かせない独創的な特徴を 備えた実機仕様のパルス電源は、実負荷試験などを繰返 Proceedings of the 11th Annual Meeting of Particle Accelerator Society of Japan August 9-11, 2014, Aomori, Japan

PASJ2014-SUP124

しながら、キッカー電磁石と共に実用に向けて整備を進めている段階である。

4.4 ビーム診断系

従来型のビーム診断系として、CsI シンチレータを 用いたスクリーンモニタ及び三角電極静電ピックアッ プ型位置モニターを、キッカー電磁石が設置される直 線部以外の5箇所にそれぞれ設置した。これらは、1 次ビームを用いたリング調整時に用いる。一方、1イ ベントを周回させる時にモニターとなるビーム診断系 として、空洞型ショットキーピックアップ(共鳴周波数 ~171.5 MHz)^[8]及び炭素薄膜(100 mm×50 mm、厚さ 60 µg/cm²)とMCPを用いたタイミング検出器^[9]をぞ れぞれ1台ずつ用意した。空洞型ショットキーピックアッ プは現状では、1イベントを1 ms 程度周回させたとこ ろでそれを検出する能力を持っていないが、数十 ms を 越えて蓄積する必要のある寿命測定などの実験には活 用できる。また、質量測定に必要なリングの外に設置す る検出器系の整備はこれから順次行なう予定である。

4.5 真空、電源及び制御系

リング内を10⁻⁸Paの超高真空で維持するために、真 空チェンバのベーキングシステムを整備した。また、イ オンポンプ27台とNEGポンプ27台を用いた密閉型の 排気システムとし、入射部及び出射部には高速緊急遮断 バルブを設け周囲のトラブルからリング内の真空を守 れるよう設計した。現在は、まだベーキングを行なって いないが、リング内の真空度は10⁻⁶Paオーダー前半を 維持している。

トリムコイルは6mm×6mm角のホロコンで、10本 ぞれぞれを直列接続し励磁する。そのため 10 台の直流 電源を用意した。この直流電源は再利用品であり、電 源定格まで電流を流した場合の消費電力は1台当たり 5kW 程度である。入射ラインの四極電磁石についても 10 台それぞれに直流電源を用意した。同様に電源定格 まで電流を流した場合の消費電力は1台当たり10kW 程度である。また、セプタム電磁石は入射用に2台、出 射用に2台の計4台あるが、入射用と出射用の仕様が 同じなので、直流電源は2台のみ用意した。入射及び出 射用それぞれの、リングに接近している側のセプタム電 磁石2台(小セプタム)を直列に接続、リングから離れ ている側のセプタム電磁石2台(大セプタム)を直列に 接続した。それぞれの消費電力は同様に 85 kW 程度と 110 kW 程度となる。一方、リング本体の主コイルは、 入射ビームラインの偏向電磁石も含め25台分を直列接 続し励磁するため、主コイル電源は1.3 MW級となる。 また、偏向電磁石のヨークが積層構造なので電源の安定 度の影響を受け易い。昨年の実負荷試験の際、主コイル 電源の電流安定性と磁場の安定性に強い相関が見られ、 その安定度は定格内の 2500 A 時で 5×10⁻⁵ 程度であり 改善の必要がある。

また、リングの各偏向電磁石は、過去の磁場測定デー タを参考に各セクター毎の BL 積値が平均化するように 配置したが、補正が必要な場合に備え、各偏向電磁石に 付随する補正コイルを活用できるよう準備した。補正コ イルは各セクター毎、つまり偏向電磁石 4 台分を直列 に接続し励磁できる体制をとっている。一方、入射ビー ムラインの偏向電磁石に付随する補正コイルは、リン グ本体とは独立に励磁できるように配線し、元々備わっ ていたバンプコイルと併用することで偏向角度を調整 できるよう整備した。

真空制御系を除き他は全て制御室より遠隔で制御す ることになる。我々は EPICS を用いて、電源系及びリ ングの運転に必要な駆動系の制御を行う。また、真空 制御系も制御室にて監視できるよう整備した^[10]。最後 に、主要な機器の設置がほぼ完了した稀少 RI リングの 俯瞰写真を図6に示す。

Figure 6: Photograph of Rare-RI Ring.

5. 稀少 RI リング性能試験

稀少 RI リングの性能を確かめるため、α 線源 (²⁴¹Am) を用いた試験を行なっている。まず、α 線源をリング直線 部の周回軌道中心に設置し (図2の R-MD1 チェンバ内)、 主コイル及びトリムコイルを適切に励磁すればα粒子が 1 周回ることを確認した。図 7(a) は R-MD1 チェンバ内 の配置を示し、図 7(b) は主コイル電流値を変更した場

Figure 7: (a) is a photograph of α -source and detectors setup. (b) shows total count rate at the plastic scintillation counter as a function of the main-coil current.

合の1周回後のプラスチックシンチレータにおけるカウ ントレートの違いを示す。この時10本のトリムコイル には、1次のトリム磁場の最適解($(dB/dr)/B_0 = 0.205$) を反映した電流値を与えている。 α 粒子のカウントレー トは、主コイル電流値が107 A 付近が最大で約0.35 cps である。図7(b)の赤丸は、主コイル電流値は107 A だ が、途中のゲートバルブを閉めた状態で測定したデータ であり、青丸が作るピークが確かに α 粒子によるもの だと確認するために行なった。

Figure 8: Red circles indicate the time width (r.m.s.) of the TOF measurement of α -particles as a function of trim magnetic field $(dB/dr)/B_0$.

次に、トリムコイルが等時性調整の役割を果たして いるかどうか確認するため、主コイル電流値を 107 A に固定し、トリムコイル電流値(1次のトリム磁場 (*dB/dr*)/*B*₀)を変更しながら α 粒子 1 周の TOF 測定 を行った。この時、途中にコリメータを設置し角度を ±20 mrad 程度に絞っているが、線源出口の薄膜によるエ ネルギーストラグリングによる広がり(運動量広がり) に制限はかけていない。等時性度が良い場合、運動量が 違っても TOF のばらつきは小さい (時間幅は狭い) はず であり、逆に等時性度が悪い場合、時間幅が広くなるは ずである。図8は1周後の時間幅を1次のトリム磁場 を変数として測定したデータを示す。1次のトリム磁場 が $(dB/dr)/B_0 = 0.205$ の時、時間幅は最小となってお り、計算で推測していた値と一致、トリムコイルが設計 通りだということが確認できた。また、あえて等時性を 崩すと時間幅が広がる様子も確認した。一方、α粒子が 1周する時間 (約 4.5 μ s) に対し、 $(dB/dr)/B_0 = 0.205$ の時でも時間幅は RMS で約 1.7 μs であり、等時性度と しては4×10⁻⁴程度と言える。これは、1次のトリム 磁場による TOF のばらつきをシミュレートした結果よ りも1桁悪い。理由としては、測定系のジッターの影響 や主コイル電源の電流安定度の影響などが考えられる。 特に、最大定格 3000A の主コイル電源を 100A 程度と 安定度保証範囲外で運転しているため、電流安定度は DCCT 出力で 10⁻⁴ オーダー中盤程度と悪く、これで制 限されている可能性が高い。今後、まず測定系の見直し を行い、主コイル電源を1桁安定度の良い電源と交換 し、例えば2次のトリム磁場まで考慮してどこまで等 時性度を良く出来るかなど、α線源を用いた試験を継続 する予定である。

6. まとめ

建設開始より約2年間で、 α 線源による性能試験を 行える状態まで整備した。今年度は、 α 線源による性能 試験を継続して行なう予定であり、等時性度の確認だ けでなく、入射軌道の調整、キッカーによる入射及び周 回・取出し、そして TOF 測定までできればと考えてい る。その一方で2015年度前半のビームによるマシンス タディを見据えて各機器の整備も平行して進めていく 必要がある。個別入射を実現するために、トリガ信号伝 達ケーブルを敷設する。キッカー電磁石はインピーダン スミスマッチを解消した上で、ビーム $B\rho \sim 6.0$ Tm ま で入射可能にするためにあと2台増強する(現状は最大 2.4 Tm)。また、ビーム診断系、TOF 測定用検出器及び 粒子識別用検出器などの整備も進め、ベーキングも行う 予定である。マシンスタディ後は、2015年度中に質量 測定実験を開始したいと考えている。

参考文献

- Y. Yamaguchi, et al., "PRESENT STATUS OF RARE-RI RING PROJECT AT RIKEN RIBF" Proc. of the 5th Annual Meeting of Particle Accelerator Society of Japan, Higashi-Hiroshima, Aug. 6-8, 2008.
- [2] T. Uesaka, et al., "The high resolution SHARAQ spectrometer", Nucl. Instrum. and Methods B266 (2008) 4218.
- [3] A. Noda, et al., "MAGNET SYSTEM OF HEAVY ION SYNCHROTRON AND COOLER RING, TARN II" Proc. of the 11th Int. Conf. on Cyclotrons and their Applications, Tokyo, Japan, 1987.
- [4] T. Fujinawa, et al., "UTILITIES FOR THE RARE-RI RING OF THE RIKEN RI-BEAM FACTORY (RIBF)" Proc. of the 10th Annual Meeting of Particle Accelerator Society of Japan, Nagoya, Aug. 3-5, 2013.
- [5] S. Wanajo, et al., "PRODUCTION OF ALL THE r-PROCESS NUCLIDES IN THE DYNAMICAL EJECTA OF NEUTRON STAR MERGERS" The Astrophysical Journal Lett. 789:L39 (6pp), 2014.
- [6] I. Meshkov, et al., "Individual rare radioactive ion injection, cooling and storage in a ring" Nucl. Instrum. and Methods A523 (2004) 262.
- [7] Y. Yamaguchi, et al., "Construction of rare-RI ring at RIKEN RI Beam Factory", Nucl. Instrum. and Methods B317 (2013) 629.
- [8] F. Suzaki, et al., "Performance of a resonant Schottky pickup for Rare-RI Ring project" J. Phys. Soc. Jpn, in press.
- [9] Y. Abe, et al., "Developments of time-of-flight detectors for Rare-RI Ring" JPS. Conf. Proc. 1, 013059 (2014).
- [10] M. Komiyama, et al., "STATUS OF THE RIKEN RI BEAM FACTORY CONTROL SYSTEM" Proc. of the 14th Int. Conf. on Accelerator and Large Experimental Physics Control Systems, San Francisco, Oct. 6-11, 2013.