

international linear collider

ILCに向けた超伝導加速器技術開発

高エネルギー加速器研究機構 早野仁司、STFグループ

20140810 Accelerator Society meeting @Aomori

ilc

ilc

ILC 加速器 主リニアック概説 STF/こおける超伝導加速器開発 超伝導加速空洞開発 まとめ

STFにおける超伝導加速器開発

ilc

STF 加速器 計画図

STF Accelerator in 100m length STF tunnel.

Beam Energy :418MeV Beam Charge : 2nC/bunch, 2437bunch, 0.9ms, 5Hz Beam current: 5.7mA in train Bunch train: 369ns spacing

Chicane 1

Chicane 2

ILC-type Cryomodule (CM-1) (12m)

Beam

Dump

half-size Cryomodule (CM-2a) (6m)

Capture Cryomodule (4m)

Photo-cathode RF-gun

STFトンネルを利用して12m長のモジュール組立を行った。

インプットカップラーの取付

4連結空洞+4連結空洞

ilc

8連結空洞をGRPへ吊下げ

BPMへ4極電磁石取付

合計12台の超伝導加速空洞の入ったモジュール組立が2014年7月に完了している。

トンネル内で完成したCM-1を所定の位置に移動・設置。 地上部設備で組み立てた4空洞モジュールCM-2aを地下に降ろし、CM-1に連結。 ヘリウム冷凍機コールドボックスと連結。 カップラー室温部を取付け、両端ビームパイプ部を取付けて、完成。

STF 加速器のRFパワー系

P2 Man

ILC仕様のRFパワー供給を計画中 (TDR scheme)

Cryomodule-1

ILC仕様立体回路

ilc

10MW マルチビームクライストロン

現在はマルチビームクライストロンは、 バウンサー変調器とパルストランスで ドライブされている。 将来はマルクス変調器に変える予定。

超伝導空洞の加速性能を上げる開発

空洞製造

ニオブ材料、プレス加工、機械加工、電子ビーム溶接

表面処理

電解研磨処理、リンス処理、超純水高圧洗浄、ベーク処理、 クリーンルーム技術

ilC

電界試験時

温度センサーマップ(T-map)、X線センサーマップ(X-map)

内面検查·局所研磨修理

内面検査カメラ、レプリカ採取、局所研磨装置

(*)これらの開発を支援する表面分析機器の利用・導入

空洞内面の電解研磨処理(高性能表面処理の開発)

STF surface research team

ilr

IIL

電解研磨は、非常に危険な 強酸を使用する内面研磨法 であるが、超伝導空洞の高電界 性能を安定して出せる方法。

開発点 なめらかな表面粗さ 一様な研磨厚み 表面からのイオウ、その他のコンタミの除去 表層からの水素除去 表層の酸素、窒素その他の原子と 超伝導性能との相関

電解研磨

硫酸とフッ化水素酸の混合液を空洞に半分ほど 満たし、内部電極と空洞の間に17Vほどの電圧を かける。

300Aほどの脈流電流が流れ、硫酸ニオブの不動態 層を形成しながらも、フッ素イオンのニオブアタックに より、ニオブ表面の研磨が進行する。 中央の電極には、水素ガスの発生、イオウの生成が 起き、その的確な処理が必要。

電解研磨表面を分析するための表面サンプリング

STF surface research team

表面付着物はフィールドエミッターになる。

電解研磨終了時、リンス終了時の表面付着物の分析

SEM観察用カーボンテープで表面をサンプリング

残留イオウ粒子の有無のモニタリング 外来付着物の有無の観察 など

2011/10/20 11:26 N D5.1 x1.8k 50 um

2011/10/20 11:54 N D5.3 x1.8k 50 um

電解研磨表面を分析するためのクーポン・サンプル空洞

レ空洞 STF surface research team

空洞の電界性能試験(縦測定)(高電界阻害原因の追求) STF SC-cavity team

クエンチ箇所、電子エミッターを特定するための温度センサーマップとX線センサーマップ

STF SC-cavity team

ilc

空洞内表面の高分解能観察と欠陥除去のための局所研磨装置

Kyoto-KEK collaboration

MHI16 quench at 20.8MV/m

AES003 quench at 20MV/m

溶接ビード内に多数のピット欠陥が埋まっている!

溶接ビームパラメーターの問題か? 溶接面のコンタミが原因か? 溶接面開先形状の問題か?

現在、原因を調査・研究中

ただし、このプロセスは TDRに従ったものではない。 いろいろな研究考察を混じえたものである。 TDR spec. 35MV/m +/- 20%

性能が最後まで上がらなかった空洞(MHI-24)は、時間的制約のためフィールドエミッター原因が特定できなかった。

まとめ

ilC

STFでは、ILCクライオモジュールを開発・性能達成をする、 そして超伝導リニアックの運転経験を積む、という目標のもと 超伝導加速器の開発を進めている。

ILC仕様を満足する空洞の開発は、 クライオモジュールに組み込む空洞を用いて開発している。

STF空洞の性能:

ニオブ材料メーカー、空洞製造メーカーの努力と並行して、 STFでは性能制限原因の追求、原因除去の開発を行っている。 診断ツール、局所研磨、表面分析による解析、クリーンルーム 技術など、多方面にわたる開発がなされてきた結果、 ほぼILC仕様を満足する加速勾配性能が得られている。

