超伝導空洞用インプットカプラーで使用される極薄肉銅メッキについての RRR および厚み測定

MEASUREMENTS OF RRR AND THICKNESS ON THIN CU-PLATING USED FOR INPUT COUPLERS IN SUPERCONDUCTING CAVITIES

梅澤裕明^{#,A)}, 齋藤太 ^{A)}, 加古永治 ^{B)}
Hiroaki Umezawa ^{#,A)}, Futoshi Saito^{A)}, Eiji Kako^{B)}

^{A)} Tokyo Denkai Co., Ltd.

^{B)} High Energy Accelerator Research Organization

Abstract

Input coupler for superconducting cavities is required high electrical conductivity and low thermal conductivity. To satisfy both of opposite properties, the input coupler made by copper plated stainless steal are under developing. To find the best condition for the Cu plating, we measured RRR(Residual Resistivity Ratio) and thickness of the Cu plating of several samples. From the results of RRR measurement and thickness measurement we found influence of heat treatment for the RRR and how to avoid decreasing of the RRR from the heat treatment.

1. はじめに

超伝導空洞のインプットカプラーには、クライストロンからの電力を効率よく導入するために電気抵抗が低いことが望まれる。その一方で、クライオスタット外からの熱侵入を抑えるために熱伝導率は低い方が望ましい。Wiedemann-Franz 則によると、金属の電気伝導度と熱伝導率は比例関係にあるため、低電気抵抗と低熱伝導率は矛盾する。この相反する特性をかなえるため、ステンレスに銅メッキを施したインプットカプラーが現在開発中である「ロローロー」に対したインプットカプラーが現在開発中である「ロローロー」に対したインプットカプラーが現在開発中である「ロローロー」に対したインプットを複数用意して RRR(Residual Resistivity Ratio: 残留抵抗比)の測定を行った。さらに、顕微鏡を用いてのメッキの厚み測定を行い、メッキ厚とRRRの関係を調べた。

2. RRR 測定方法

RRR は室温の電気抵抗を極低温の電気抵抗で除した値で主に金属の純度の評価に用いられる。超伝導加速空洞用のニオブにおいては、RRR が極低温における熱伝導率に比例することから、RRR がニオブの等級を示す最も重要な指標になっている。今回、インプットカプラー用の極薄肉銅メッキステンレス(以後銅メッキ SUS)の RRR を測定するにあたり、東京電解がニオブの品質管理に使っている RRR 測定装置を用いて行った。RRR は通常、室温での抵抗を液体へリウム温度(4.2K)での抵抗で除した値で計算されるが、東京電解の装置はニオブ専用機であり、冷凍機を使って冷やす方式なので 4.2K まで冷やすことはできない(ニオブの超伝導臨界温度は 9.3K なので 4.2K まで冷やす必要がない)。今回は極低

温での銅メッキ SUS およびメッキをはぎ取った後の裸 SUS の極低温における抵抗の温度依存性から十分に飽和していることを確認の上、10K での抵抗率から RRR を計算した。

$$RRR = \frac{\rho_{293K}}{\rho_{10K}} \tag{1}$$

銅メッキ部分の RRR 測定は、まずメッキされた SUS の RRR を測定し、そのサンプルを 20%硝酸に 浸し銅を溶解してメッキを剥がした裸 SUS の状態にした後、再び RRR を測定する。メッキされた SUS の抵抗からメッキを剥がした裸 SUS の抵抗を減じたものがメッキの抵抗となる。計算式を(2)に、抵抗回路図を Fig.1 に、サンプル形状を Fig.2 に示す。式中、R は抵抗、 ρ は抵抗率、下付の文字で各成分を表している。さらに 1 は抵抗測定の際の端子間長さ、S はサンプルの断面積で幅 W とそれぞれの成分の厚みから算出される。

$$\frac{1}{R_{Cu/SUS}} = \frac{1}{R_{Cu}} + \frac{1}{R_{SUS}}$$

$$\frac{1}{\rho_{Cu/SUS}} \cdot \frac{l}{S_{Cu/SUS}} = \frac{1}{\rho_{Cu}} \cdot \frac{l}{S_{Cu}} + \frac{1}{\rho_{SUS}} \cdot \frac{l}{S_{SUS}}$$

$$\rho_{Cu} = \frac{S_{Cu}}{\frac{S_{Cu/SUS}}{\rho_{Cu/SUS}} - \frac{S_{SUS}}{\rho_{SUS}}}$$
(2)

[#] umezawa@tokyodenkai.co.jp

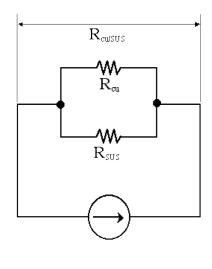


Fig.1 Circuit Diagram.

3. 測定サンプル

測定したサンプルを Table.1 に示す。一つのメッキ条件から 6 個のサンプルを作成した。実際のインプットカプラーはロー付けをして組み立てられるため、水素雰囲気中で 800℃の熱履歴がかかる。この熱処理によるメッキの RRR の影響を調べるため、実機と同じ熱処理をしたサンプルとしないものの 2 種類を 3 本ずつ用意した。2 本は RRR 測定に、1 本はメッキ厚さ測定のため、切断して断面を研磨し顕微鏡観察に供した。Table.1 中の銅メッキ膜厚、種類はメッキメーカーによる公称値である。

4. メッキ厚の測定

RRR 測定(抵抗率測定)のために正確なメッキの厚みが必要となるため、まずメッキ厚の測定を行っ

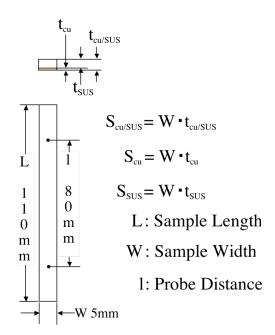


Fig.2: RRR Sample.

た。サンプルを切断し、断面が研磨面になるように樹脂に埋め込んで研磨。その断面を光学顕微鏡 DSX500 (オリンパス製)を用い観察。銅メッキによる黄色い部分の長さを測定しメッキ厚とした。観察画面の一例としてサンプル A (メーカー公称メッキ厚 $5.2\,\mu$ m、光学顕微鏡による測定結果 $18.2\,\mu$ m)の断面写真を Fig.3 に示す。

この方法で A から H までそれぞれ熱処理有りと無しのサンプルのメッキ厚の測定した結果を Table.2 と Fig.4 に示す。メッキ会社が表示しているメッキ厚と顕微鏡で実際に測定したメッキ厚に大きな違いがあった。さらに、熱処理前後でメッキ厚に変化があるかを確認するため、横軸に熱処理前の、縦軸に熱処理後のメッキ厚をプロットしてみた(Fig.5)。比較のためグラフ中に y=x の直線を引いた。このグラフからもわかるように、熱処理によるメッキ厚の影響は見られなかった。

Table1: Detail of Samples

サンプル No.		メッキ	銅メッキ条件		
熱処理前	熱処理後	メーカー	銅メッキ膜厚	銅メッキ種類	
A1, A2, A3	A4, A5, A6	X	Au ストライク + Cu5.2 μ m	無光沢ピロリン酸銅メッキ	
B1, B2, B3	B4, B5, B6	X	Au ストライク + Cu19.2 μ m	無光沢ピロリン酸銅メッキ	
C1, C2, C3	C4, C5, C6	X	Ni ストライク + Cu5.4 μ m	無光沢ピロリン酸銅メッキ	
D1, D2, D3	D4, D5, D6	X	Ni ストライク + Cu20.6 μ m	無光沢ピロリン酸銅メッキ	
E1, E2, E3	E4, E5, E6	Y	Ni ストライク + Cu5 μ m	シアン化銅メッキ	
F1, F2, F3	F4, F5, F6	Y	Ni ストライク + Cu20 μ m	シアン化銅メッキ	
G1, G2, G3	G4, G5, G6	Z	Ni ストライク + Cu11.7 μ m	シアン化銅メッキ	
H1, H2, H3	H4, H5, H6	Z	Ni ストライク + Cu35 μ m	シアン化銅メッキ	

Fig.3 Picture of Cross-section.

Table 2: Thickness of Cu Plating

サンプル	メーカー公	顕微鏡測定メッキ厚	
	称メッキ厚	熱処理前	熱処理後
A	5.2 μm	15.9 μ m	18.2μ m
В	19.2μ m	5.9μ m	3.2μ m
C	5.4μ m	20.7μ m	18.8μ m
D	20.6μ m	3.9μ m	2.9μ m
E	5.0μ m	$4.1~\mu$ m	2.1μ m
F	20.0μ m	6.8μ m	6.6μ m
G	11.7μ m	10.7μ m	10.9μ m
Н	35.0μ m	29.1 μ m	29.5μ m

5. メッキの RRR 測定

銅メッキされたサンプルの RRR (室温と極低温における抵抗率)を測定し、そのサンプルの銅メッキ分を硝酸で溶かしてメッキをはぎ取った後、再びRRR を測定してから、それぞれの抵抗率の値から(2)式によりメッキ部分のみの RRR の測定を行った。その結果を Table.3 に記す。

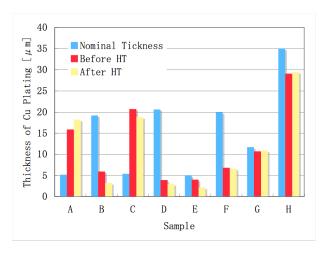


Fig. 4: Thickness of Cu Plating.

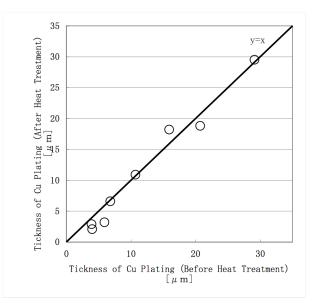


Fig 5: Cu Plating Thickness between Before HT and After HT.

Table 3: RRR of Cu Plating

サンプル	熱処理前 RRR	熱処理後 RRR
A	51.1	3.9
В	19.9	1.4
C	46.0	6.7
D	10.8	1.2
E	20.9	1.4
F	44.1	2.3
G	31.1	3.9
Н	41.7	32.8

Table 3 の銅メッキの RRR 測定結果から、すべてのサンプルにおいて熱処理後の RRR が下がっていることがわかった。さらに詳しく調べるため、メッキ厚と RRR の相関を調べた。グラフを Fig 6 に示す。 Fig 6 より、熱処理前のサンプルではメッキ厚が 5 μ m以下の領域では RRR が低いものの、それを超えると高くなることがわかった。また 5μ mを超える領域ではメッキ厚の上昇に伴わず RRR はほぼ一定だった。

熱処理後のサンプルでは 20μ m以下のメッキ厚領域において著しい RRR の低下が見られたが、 30μ m程度になると、RRR が熱処理前の値に近くなった。これらのことから、メッキ厚が厚くなると熱処理による悪影響は少なくなると思われる。

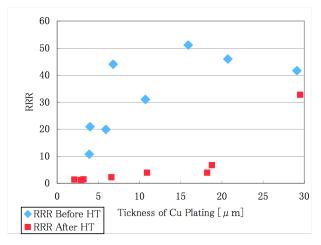


Fig 6: Relationship Between RRR and Thickness of Cu Plating.

6. 結言

超伝導空洞用のインプットカプラーに用いられる極薄肉銅メッキ SUS の銅メッキ部分の RRR の測定とメッキの厚みの測定を行った。メッキの厚みはメッキメーカーが公称している値と異なる結果となった。メッキの厚みが RRR、ひいては熱伝導率の結果に大きく影響を及ぼすため、メッキの厚さをき

ちんと管理する必要があることがわかった。

メッキの RRR はメッキの厚さに依存し、RRR30 以上の RRR を得るためには、少なくとも 6μ m以上のメッキ厚が必要なことがわかった。但し、インプットカプラー製造時にロー付けのための熱処理工程(水素雰囲気中で 800°C)があり、この熱処理を行うことでメッキの RRR が低下することがわかった。この熱処理による RRR 低下を防ぐためには、少なくともメッキ厚が 30μ m程度は必要であることがわかった。

参考文献

- T. Treado, et al., "POWER COUPLERS FOR THE ILC", Proceedings of the PAC07 in USA, Albuquerque, June. 25-29, 2007
- [2] M. Fouaidy, et al., "RRR OF COATING AND LOW TEMPERATURE ELECTRICAL RESISTIVITY OF MATERIAL FOR TTF COUPLERS", Proceedings of the 12th International Workshop on RF Superconductivity, in USA, Cornel University, Ithaca, New York, July. 10-15, 2005