サイラトロンドライバの故障対策

中島啓光1、本間博幸、明本光生、設楽哲夫、福田茂樹 高エネルギー加速器研究機構 〒305-0801 茨城県つくば市大穂 1-1

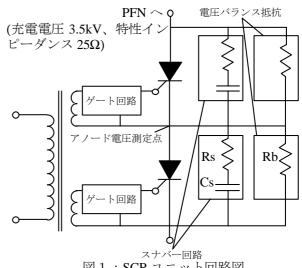
概要

KEKB 入射器大電力クライストロン用パルス電源 では、サイラトロンドライバ(トリガーII)の故障が 非常に多く問題となっている。故障箇所は SCR ユニ ット内の SCR 本体、スナバー回路のコンデンサーな どであった。

そこで、SCR に印加される電圧波形の測定とコン デンサーの故障原因の調査を行った。その結果、ス ナバー回路の抵抗値とコンデンサーを変えることに よって、故障原因を取り除けることが分かった。

1. はじめに

KEKB 入射器大電力クライストロン用パルス電源 では、サイラトロンドライバ(トリガーII)の故障が 非常に多く問題となっていたため、99年に SCR のゲ ート信号のパルス幅を狭める対策を行った[1]。その結 果、故障数は約半分程度まで減少した。しかし、そ れでも長期シャットダウン後の立上げ時には、故障 が多発し問題となった。その故障箇所の多くは、SCR ユニット内の SCR 本体、スナバー回路のコンデンサ ーなどである。


SCR の故障は、メインサイラトロンの異常放電時 などのリアクションが原因と考えられている。そこ で、実際に SCR に印加される電圧波形を測定した。 また、コンデンサーの故障については、その原因を 調査するために分解調査をメーカーに依頼した。

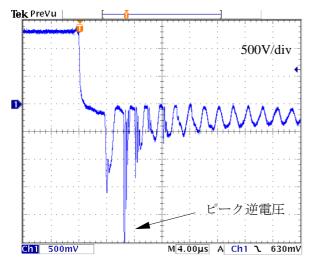
本稿では、SCR に印加される電圧波形の測定結果 とメーカーに依頼したコンデンサーの分解調査の結 果について述べ、最後に現在の使用状況について述 べる。

2. トリガーII の構成

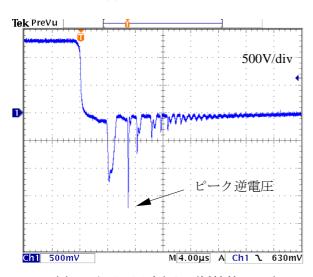
トリガーII はメインサイラトロンのドライバーで あり、交流電源からの入力を直流に変換する直流電 源部、PFN に充電をするための充電回路部、パルス 電圧を出力するための PFN、PFN を放電させるため の SCR ユニットによって構成されている。

今回の故障は、全て SCR ユニット内におけるもの であり、故障箇所は SCR 本体、あるいはスナバーコ ンデンサーであった。SCR ユニットは、直列に接続 された2個のSCR、同数のゲート回路、スナバー回 路と電圧バランス抵抗によって構成されていて、 3.5kV に充電される PFN からパルス出力を得るため のスイッチの役割を果たしている。SCR ユニットの 回路図を図1に示す。スナバー回路で現在使用して いる SCR とコンデンサーの耐圧は 2.5kV であり、コ ンデンサーの静電容量は 0.033μF である。また、ス ナバー回路の抵抗値は120Ωである。

図1:SCR ユニット回路図


3. SCR に印加される電圧波形

3.1 スナバー回路の効果


スナバー回路は、SCR 点弧後のピーク逆電圧を抑 えて SCR を保護するための回路である。そこで、ス ナバー回路の効果を確認するために、スナバー回路 がない時の低圧側 SCR のアノード電圧波形を測定し た。図2(a)がその測定結果であり、図2(b)は スナバー回路がある時の電圧波形である。スナバー 回路がない時のピーク逆電圧は 2.8kV であった。そ れに対して、スナバー回路がある時では 1.7kV と約 1kV も低くなっている。この結果から、スナバー回 路はピーク逆電圧を抑えるのに有効であることが分

次に、スナバー回路の抵抗値を変化させて、低圧 側 SCR のアノード電圧波形を測定した。スナバー回 路の抵抗値とピーク逆電圧の関係を図3に示す。こ の結果から、スナバー回路の抵抗値が小さいほどピ ーク逆電圧を抑えられ、抵抗値が 100kΩになるとス ナバー回路の効果はかなり小さくなってしまうこと が分かる。

¹ E-mail: hiromitsu.nakajima@kek.jp

(a) スナバー回路なし

(b) スナバー回路あり (抵抗値 120Ω)

図2:SCR のアノード電圧波形 (時間軸 4.0us/div)

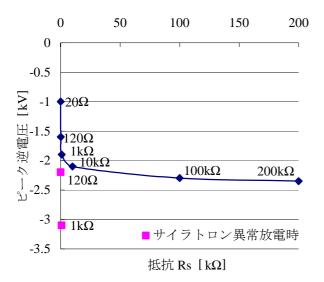


図3:抵抗値とピーク逆電圧

3.2 サイラトロン異常放電時

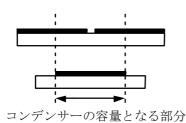
サイラトロンを意図的に異常放電させた時のピー ク逆電圧を測定した。その結果、ピーク逆電圧は、 スナバー回路の抵抗値が 120Ω の時は 2.2kV、 $1k\Omega$ の 時には 3.1kV であった (図3参照)。この値は、サ イラトロンが正常に動作をしている時と比較すると かなり高くなっている事が分かる。SCR ユニットに て使用している SCR の逆耐圧は 2.5kV であるから、 抵抗値を 120Ωにすれば SCR を保護することができ るはずである。しかし、実際には、抵抗値が120Ωで あっても SCR が壊れることがあった。これは、より 高いピーク逆電圧が発生することがある可能性を示 している。従って、抵抗値はできるだけ小さくした 方が良いことになる。ただし、抵抗値を小さくする と、ピーク電流が大きくなってしまうために、コン デンサーの許容ピーク電流を超えないように注意す る必要がある。

4. コンデンサーの分解調査結果

4.1 故障状況

スナバーコンデンサーの故障の症状は、焼損、静電容量の減少などであった。低圧側のコンデンサーが壊れた場合には、高圧側の SCR が壊れるといったように、コンデンサーが故障するとその反対側の SCR も壊れてしまうことが多かった。

故障原因としては、ピーク逆電圧、あるいはピーク電流が考えられたが、どちらが原因か特定することはできなかった。そこで、故障原因を解明するためにメーカーに分解調査を依頼した。


4.2 調査結果

焼損したコンデンサーと静電容量が減少したコンデンサーの分解調査をメーカーに依頼したところ、 以下のことが分かった。

まずこのコンデンサーは繰り返し充電用に作られたものではなく、誘電体(ポリエステル)の $\tan\delta$ は大きいとのことであった。図 4 は、コンデンサーの分解調査結果である。この図から隣り合う誘電体フィルムの間でコロナ放電が起こり、蒸着金属が後退していることがわかる。この後退個所は1 箇所だけであった。他の故障要因であるサージ電流の場合ではリード線につながる蒸着金属の部分(コンデンサーの容量とならない部分)が剥がれることが一般的だそうである。また、コンデンサーの正負間に過電圧が印加された場合には、何箇所ものところで、蒸着金属の剥離が起こると言うことであった。

分解調査結果から、コンデンサーの故障原因は、繰り返し充放電用でないコンデンサーを長期間トリガーⅡの図5に示す様な充放電条件で使用したために、誘電体が経年変化を起こし、蒸着電極付の誘電体フィルムの隣同士でコロナ放電が起き、電極が剥がれ後退していったためと判明した。このことで静電容量の減少は説明される。また、焼損したコンデ

ンサーがあったのは、この時一部の蒸着金属(図4の(A))が残って、誘電体との間で接触不良を起こし、電流による発熱のため、誘電体が炭化しそれが拡大していったためとのことであった。

正常品

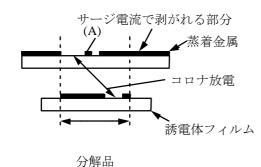


図4:コンデンサーの分解調査結果

図5:トリガーII 充放電条件

5. 現在の使用状況

コンデンサーの調査結果から、現在使用しているコンデンサーでは、スナバー回路での使用には適していないことが明らかになったため、コンデンサーを新しいものに交換することにした。新しいコンデンサーの静電容量は、現在の 3 倍程度が適当なため $0.1\mu F$ にした。

コンデンサーを新しいタイプにしたことによって、コンデンサーの故障はなくなるものと思われる。現在、8台の電源にて、スナバー回路の抵抗値は120Ωのままで、新しいコンデンサーを試験的に使用しているが、約半年経過した現在、コンデンサー及びSCRの故障はない。新しいコンデンサーを使用したSCRコニットにおいて、サイラトロンが正常に動作している時の低圧側SCRのアノード電圧を測定した結果を図6に示す。

スナバー回路の抵抗値を小さくすると、さらにピーク逆電圧は抑えられるが、現在は、コンデンサーの試験のために抵抗値を以前使用していたのと同じ 120Ω にしている。今回使用したコンデンサーの許容ピーク電流は 80A であるため、高圧側あるいは低圧側にかかる電圧をコンデンサーあるいは SCR の耐圧の 2.5kV と考えても抵抗値は約 32Ω まで下げられることになる。しかし、スナバー回路の抵抗値が同じ 120Ω であっても、新しいコンデンサーの方がピーク逆電圧は低く、ひげ状の逆電圧も少なくなっている。そのため、抵抗値が以前と同じ 120Ω であっても SCRの故障は減少すると考えている。

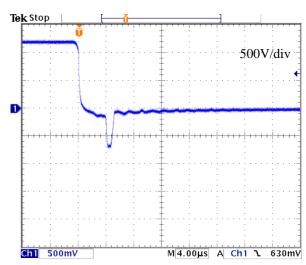


図6:SCR のアノード電圧波形 (時間軸 4.0 μs/div)

6. まとめ

コンデンサーの故障については、今回、スナバー 回路のコンデンサーを変えることにより、解決され たと考えている。また、スナバー回路のコンデンサ ーを変えたことによって、ピーク逆電圧もかなり抑 えられるようになり、スナバー回路の抵抗値を下げ れば、ピーク逆電圧をさらに抑えることもできる。 そのため、SCR の故障についても解決されると考え ている。

参考文献

[1] H. Honma et al., "Troubles about Operation of the KEKB Injection Linac Klystron Modulator", Proceedings of the 25th Linear Accelerator Meeting in Japan, URL: http://www.spring8.or.jp/JAPANESE/conference/li-me00/PDF/12P-28.pdf